首页
/ 自动持久化查询 - 提升GraphQL性能的新篇章

自动持久化查询 - 提升GraphQL性能的新篇章

2024-05-21 03:10:01作者:裘晴惠Vivianne

在日益复杂的数据交互需求中,GraphQL凭借其强大的查询语言,使得获取应用数据的方式更为灵活和高效。然而,随着查询复杂性的增加,相应的请求字符串也变得越来越长,甚至可达数千字节。这无疑对客户端的网络性能构成了挑战。为解决这一问题,我们引入了一个优秀的开源解决方案——Automatic Persisted Queries,它已经被合并到Apollo Client的核心库中。

项目介绍

Automatic Persisted Queries(APQ)通过发送一个短小的加密哈希值来代替整个查询文本,从而极大地优化了网络传输效率。当服务器识别到这个哈希值时,会自动检索并执行对应的查询。如果服务器找不到匹配的哈希,就会要求客户端提供完整的查询文本进行存储,以便后续使用。

项目技术分析

  1. 哈希替代策略:客户端发送一个64位的哈希值作为请求的一部分,而非完整的查询字符串。
  2. 智能适配:服务器基于哈希值查找对应查询,若未找到,则请求完整查询,同时保存以备未来使用。
  3. 链接融合:与Apollo Client配合工作,APQ作为一个自定义的链接中间件实现。

应用场景

APQ适用于任何依赖于GraphQL且关心网络性能的项目。特别是对于移动应用,或者在网络环境不稳定或带宽有限的环境下,APQ能显著提高用户体验,减少加载时间。

项目特点

  • 简单集成:只需一行代码,即可将APQ与Apollo Client链接起来,享受性能提升。
  • 动态注册:首次请求时,客户端会发送完整查询文本供服务器存档,后续仅发送哈希值。
  • 兼容性佳:与Apollo Engine无缝对接,支持自动持久化查询。
  • 选项丰富:提供自定义哈希生成器、使用GET方法发送哈希等配置选项,满足各种需求。
  • 错误处理:具备智能错误响应机制,支持根据错误条件禁用持续查询功能。

要开始使用,只需安装apollo-link-persisted-queries并按照文档指导配置你的Apollo Client,你会发现,提升应用程序的性能从未如此简单。

在这个追求速度和效率的时代,Automatic Persisted Queries为GraphQL带来了一场革命,让数据查询更轻量、更快捷。如果你正在寻找一种方法来优化你的GraphQL客户端,那么这个项目绝对值得一看。立即尝试,并见证它如何改变你的开发体验!

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.97 K
kernelkernel
deepin linux kernel
C
22
6
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
426
34
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
239
9
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
988
394
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
936
554
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69