Longhorn项目中的重复卸载Pod问题分析与解决方案
问题现象
在Longhorn存储系统的卸载过程中,用户可能会遇到一个异常现象:当执行卸载操作时,系统会创建两个卸载Pod,其中一个Pod会因"deleting-confirmation-flag is set to false"错误而失败,而另一个Pod则能够成功完成卸载任务。
问题背景
Longhorn是一个开源的云原生分布式块存储系统,它提供了可靠的数据存储解决方案。在卸载Longhorn时,系统会创建一个卸载Job来清理相关资源。正常情况下,这个Job应该只创建一个Pod来执行卸载操作。
问题分析
经过深入分析,这个问题与Kubernetes的缓存机制有关。当用户执行以下命令设置删除确认标志时:
kubectl -n longhorn-system patch -p '{"value": "true"}' --type=merge lhs deleting-confirmation-flag
虽然命令执行成功,但Kubernetes各节点上的列表缓存可能不会立即更新。因此,当系统创建卸载Pod时,部分Pod可能会从缓存中读取到未更新的"deleting-confirmation-flag"值(false),从而导致卸载失败。
问题影响
虽然最终卸载操作能够成功完成(因为至少有一个Pod成功执行了卸载),但存在以下影响:
- 系统会留下一个失败的Pod,需要手动清理
- 可能会给用户带来困惑,认为卸载过程存在问题
- 增加了系统资源的消耗(创建了额外的Pod)
解决方案
临时解决方案
用户可以手动删除失败的卸载Pod作为临时解决方案:
kubectl delete pod <failed-pod-name> -n longhorn-system
根本解决方案
为了避免这个问题,可以在设置删除确认标志后增加适当的延迟,然后再执行卸载操作。这样能够确保所有节点上的缓存都已更新。
在实际测试中,Longhorn测试团队已经在测试脚本中增加了延迟(约10秒),此后该问题不再出现。
最佳实践建议
- 在执行卸载操作时,建议在设置删除确认标志后等待10-15秒
- 监控卸载过程,确保只有一个卸载Pod被创建
- 如果发现多个Pod被创建,可以检查Pod日志确认问题原因
技术原理深入
这个问题的本质是分布式系统中的一致性问题。Kubernetes使用缓存来提高性能,但这也带来了数据一致性的挑战。当配置变更后,不同节点上的缓存更新可能存在时间差。
在Longhorn的卸载过程中,系统会检查"deleting-confirmation-flag"设置。如果Pod从尚未更新的缓存中读取到旧值(false),就会拒绝执行卸载操作并报错。
总结
Longhorn项目中的这个卸载问题展示了分布式系统中缓存一致性带来的挑战。通过增加适当的延迟,可以有效地解决这个问题。对于生产环境中的关键操作,理解这类问题的原理并采取预防措施非常重要。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00