基于HowToCook项目的智能菜谱生成与食材采购方案设计
2025-04-29 21:22:39作者:蔡怀权
项目背景与需求分析
在日常烹饪中,许多家庭面临两个常见痛点:一是每天思考"今天吃什么"的决策疲劳,二是周末采购时难以准确预估食材数量。针对这些问题,基于HowToCook开源项目,我们可以开发一套智能解决方案,实现自动生成一周菜谱并根据用餐人数计算所需食材量的功能。
技术实现方案
1. 菜谱数据结构化处理
首先需要对HowToCook项目中的菜谱数据进行结构化处理。每道菜谱应包含以下关键信息:
- 菜品名称
- 主要食材及用量
- 烹饪难度
- 烹饪时间
- 适合人数
- 菜品类别(荤/素/主食等)
2. 随机菜谱生成算法
采用加权随机算法生成一周菜谱,考虑以下因素:
- 营养均衡:确保每天有荤素搭配
- 烹饪时间分布:工作日安排简单快捷的菜品
- 口味变化:避免连续几天同类菜品
- 用户偏好:可设置不喜欢的食材或菜品
算法伪代码示例:
function generateWeeklyMenu():
weekMenu = []
for day in weekdays:
breakfast = selectRandom(breakfasts, constraints)
lunch = selectRandom(lunchs, constraints)
dinner = selectRandom(dinners, constraints)
weekMenu.add({day: [breakfast, lunch, dinner]})
return weekMenu
3. 食材统计与采购清单生成
根据生成的菜谱和设置的就餐人数,自动统计所需食材总量。需要考虑:
- 单位统一转换(克、毫升、个等)
- 食材分类(蔬菜、肉类、调味品等)
- 考虑已有库存的减法计算
- 智能合并同类项
示例计算逻辑:
function calculateIngredients(menu, people):
ingredients = {}
for meal in menu:
for dish in meal:
for ingredient in dish.ingredients:
amount = ingredient.amount * (people / dish.serving)
if ingredient.name in ingredients:
ingredients[ingredient.name] += amount
else:
ingredients[ingredient.name] = amount
return ingredients
系统扩展功能
1. 个性化定制
- 饮食限制:支持设置素食、无麸质等特殊需求
- 食材替代:当缺少某食材时推荐类似替代品
- 季节推荐:根据时令推荐当季食材
2. 智能优化
- 减少浪费:推荐能共用部分食材的菜品组合
- 预算控制:根据设置的预算范围优化菜谱选择
- 烹饪效率:安排可提前准备的菜品
3. 数据可视化
- 营养分析图表:展示一周蛋白质、碳水等摄入分布
- 采购清单分类展示:按超市区域分组食材
- 菜谱时间轴:展示每天烹饪时间预估
技术架构建议
推荐采用微服务架构设计:
- 菜谱服务:负责菜谱的存储、检索和随机生成
- 计算服务:处理食材统计和数量计算
- 用户服务:管理用户偏好和设置
- 前端展示:提供友好的交互界面
数据存储可考虑:
- 菜谱数据:文档型数据库(如MongoDB)
- 用户数据:关系型数据库(如PostgreSQL)
- 缓存层:Redis加速常用菜谱查询
实际应用价值
该方案可帮助家庭:
- 减轻日常饮食决策压力
- 避免过度采购造成的浪费
- 保证饮食多样性和营养均衡
- 优化购物时间和烹饪效率
对于开发者社区,此扩展项目展示了如何在实际需求中创造性地运用开源资源,也为HowToCook项目提供了更丰富的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758