基于HowToCook项目的智能菜谱生成与食材采购方案设计
2025-04-29 03:58:24作者:蔡怀权
项目背景与需求分析
在日常烹饪中,许多家庭面临两个常见痛点:一是每天思考"今天吃什么"的决策疲劳,二是周末采购时难以准确预估食材数量。针对这些问题,基于HowToCook开源项目,我们可以开发一套智能解决方案,实现自动生成一周菜谱并根据用餐人数计算所需食材量的功能。
技术实现方案
1. 菜谱数据结构化处理
首先需要对HowToCook项目中的菜谱数据进行结构化处理。每道菜谱应包含以下关键信息:
- 菜品名称
- 主要食材及用量
- 烹饪难度
- 烹饪时间
- 适合人数
- 菜品类别(荤/素/主食等)
2. 随机菜谱生成算法
采用加权随机算法生成一周菜谱,考虑以下因素:
- 营养均衡:确保每天有荤素搭配
- 烹饪时间分布:工作日安排简单快捷的菜品
- 口味变化:避免连续几天同类菜品
- 用户偏好:可设置不喜欢的食材或菜品
算法伪代码示例:
function generateWeeklyMenu():
weekMenu = []
for day in weekdays:
breakfast = selectRandom(breakfasts, constraints)
lunch = selectRandom(lunchs, constraints)
dinner = selectRandom(dinners, constraints)
weekMenu.add({day: [breakfast, lunch, dinner]})
return weekMenu
3. 食材统计与采购清单生成
根据生成的菜谱和设置的就餐人数,自动统计所需食材总量。需要考虑:
- 单位统一转换(克、毫升、个等)
- 食材分类(蔬菜、肉类、调味品等)
- 考虑已有库存的减法计算
- 智能合并同类项
示例计算逻辑:
function calculateIngredients(menu, people):
ingredients = {}
for meal in menu:
for dish in meal:
for ingredient in dish.ingredients:
amount = ingredient.amount * (people / dish.serving)
if ingredient.name in ingredients:
ingredients[ingredient.name] += amount
else:
ingredients[ingredient.name] = amount
return ingredients
系统扩展功能
1. 个性化定制
- 饮食限制:支持设置素食、无麸质等特殊需求
- 食材替代:当缺少某食材时推荐类似替代品
- 季节推荐:根据时令推荐当季食材
2. 智能优化
- 减少浪费:推荐能共用部分食材的菜品组合
- 预算控制:根据设置的预算范围优化菜谱选择
- 烹饪效率:安排可提前准备的菜品
3. 数据可视化
- 营养分析图表:展示一周蛋白质、碳水等摄入分布
- 采购清单分类展示:按超市区域分组食材
- 菜谱时间轴:展示每天烹饪时间预估
技术架构建议
推荐采用微服务架构设计:
- 菜谱服务:负责菜谱的存储、检索和随机生成
- 计算服务:处理食材统计和数量计算
- 用户服务:管理用户偏好和设置
- 前端展示:提供友好的交互界面
数据存储可考虑:
- 菜谱数据:文档型数据库(如MongoDB)
- 用户数据:关系型数据库(如PostgreSQL)
- 缓存层:Redis加速常用菜谱查询
实际应用价值
该方案可帮助家庭:
- 减轻日常饮食决策压力
- 避免过度采购造成的浪费
- 保证饮食多样性和营养均衡
- 优化购物时间和烹饪效率
对于开发者社区,此扩展项目展示了如何在实际需求中创造性地运用开源资源,也为HowToCook项目提供了更丰富的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704