DAGU 1.17.0 Beta版本发布:工作流引擎的重大升级
项目简介
DAGU是一个轻量级的工作流调度引擎,它允许用户通过简单的YAML或JSON配置文件定义任务依赖关系,并自动执行这些任务。DAGU特别适合需要自动化复杂任务流程的场景,如数据处理流水线、定时批处理作业等。其名称"DAGU"来源于"Directed Acyclic Graph"(有向无环图)的缩写,这正是其核心工作原理。
1.17.0 Beta版本核心改进
性能优化与历史数据重构
本次版本对执行历史数据存储进行了重大重构,显著提升了历史记录的查询性能。新的存储结构使得在大规模部署环境下,历史记录的检索速度得到明显改善。需要注意的是,由于这一底层改进,1.16.x版本的历史数据需要进行迁移才能与1.17.0兼容。
嵌套DAG执行能力
1.17.0引入了层次化执行功能,现在可以在一个DAG中嵌套调用另一个DAG。这一特性极大地增强了工作流的模块化和复用能力,使得复杂流程可以被分解为多个可管理的子流程。
增强的Web界面
用户界面进行了全面升级,不仅视觉效果更加现代化,更重要的是改善了用户体验。新增的执行历史页面支持按日期范围和状态进行筛选,使得运维人员能够更高效地追踪和分析任务执行情况。
调试与监控增强
调试信息可视化
新版本在UI中直接展示了前提条件评估的实际结果和输出变量的值,这大大简化了调试过程。开发人员现在可以直观地看到为什么某个条件没有满足,或者某个变量的具体值是什么。
日志分离
默认情况下,标准输出(stdout)和标准错误(stderr)现在会被分别记录,这一改进使得日志分析更加清晰,特别是在排查问题时能够快速定位错误来源。
队列管理与API改进
队列操作
新增了通过API和UI进行任务入队的功能,这为构建更复杂的调度策略提供了基础。用户现在可以更灵活地控制任务的执行顺序和时间。
API v2
全新的API v2版本带来了更清晰的架构和更好的抽象。这一改进不仅使API更易于使用,也为未来的功能扩展奠定了基础。新API遵循了更现代的RESTful设计原则,响应结构也更加一致。
容器化改进
Docker镜像现在被优化为三个基础镜像,显著减小了镜像体积。同时增加了对容器名称和镜像平台的指定支持,使得在异构环境中部署更加灵活。
贡献者致谢
1.17.0版本的开发得到了社区的大力支持。特别感谢贡献队列功能的开发者、优化Docker镜像的工程师、增强容器配置支持的贡献者,以及改进重复策略的团队成员。正是这些社区贡献使得DAGU能够持续进化。
升级建议
对于考虑升级到1.17.0 Beta版本的用户,建议:
- 在测试环境充分验证新功能
- 注意历史数据迁移需求
- 评估API v2是否满足需求,或是否需要保持v1兼容性
- 利用新的调试功能优化现有工作流
这个Beta版本标志着DAGU向更强大、更易用的方向迈出了重要一步,期待用户反馈以进一步完善正式版本。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00