探索文档信息提取新境界:BROS深度学习模型
2024-06-11 16:44:49作者:卓炯娓
在数字化转型的浪潮中,如何从海量文档中高效提取关键信息成为了企业与研究者共同关注的焦点。今天,我们为你介绍一个引领这一领域创新的明星项目——BROS(BERT Relying On Spatiality),一款专为文档关键信息提取设计的预训练语言模型。
项目介绍
BROS,一项在AAAI 2022年度会议发表的研究成果,由一群来自NAVER Clova的杰出研究人员开发。它通过结合文本内容与布局信息,显著提升了从文档图像中抽取有序列表等关键信息的能力。借助OCR(光学字符识别)技术提供的文本及其边界框对,BROS能够执行复杂的信息提取任务,成为智能文档处理的新利器。
技术剖析
BROS的核心在于其独特地融合了BERT的文本理解力与对文档空间布局的敏感性。它不仅考虑单词的意义,还考虑到这些单词在页面上的位置关系,这种“文本+布局”的双重视角是其优于传统模型的关键。BROS提供了两种规模的预训练模型,分别为“bros-base-uncased”和“bros-large-uncased”,分别拥有小于110M和小于340M的参数量,兼顾效率与性能。
应用场景广泛
- 金融行业:自动处理发票、银行对账单,快速提取账号、金额等重要数据。
- 法律文档处理:从合同中准确提取日期、签名等信息,提高审核效率。
- 医疗健康:解析病历报告,迅速定位诊断结果、治疗建议。
- 教育领域:自动化处理考试卷子的答案填写,提高评分速度。
项目亮点
- 精确的空间感知:利用文本的几何布局信息,提升关键信息识别的准确性。
- 即装即用的预训练模型:通过Hugging Face平台,轻松集成到现有工作流程中。
- 高度可定制化:支持针对特定领域的微调,满足个性化需求。
- 代码示例清晰:基于LayoutLM提供详尽使用指南,即使是初学者也能快速上手。
# 示例代码展示如何使用BROS模型进行信息提取
import torch
from bros import BrosTokenizer, BrosModel
# 初始化tokenizer和model
tokenizer = BrosTokenizer.from_pretrained("naver-clova-ocr/bros-base-uncased")
model = BrosModel.from_pretrained("naver-clova-ocr/bros-base-uncased")
# 构建输入数据并处理布局信息
words, quads = ... # OCR结果
bbox = ... # 根据单词和四边形坐标构建
inputs = tokenizer(" ".join(words), return_tensors="pt")
outputs = model(**inputs, bbox=torch.tensor([bbox])) # 注意力机制与边界框一起传递
结语
对于那些寻求在文档自动化处理中实现突破的企业和开发者而言,BROS无疑是一个值得深入探索的强大工具。它不仅是技术上的革新,更是迈向智能化办公时代的重要一步。立即体验BROS,让您的文档处理能力迈上一个新的台阶!
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5