在OpenAI PHP Laravel中自定义测试时的Chat响应内容
2025-06-25 14:42:59作者:宣利权Counsellor
在开发基于OpenAI API的应用时,测试环节至关重要。OpenAI PHP Laravel包提供了便捷的测试工具,但开发者可能会遇到如何自定义测试响应内容的问题。
测试响应定制化的挑战
OpenAI PHP Laravel包内置了fake()
方法用于测试,但默认情况下,Chat接口的测试响应会返回固定的内容:"Hello there, this is a fake chat response."。这在实际测试中往往不能满足需求,特别是当我们需要测试特定格式的响应或验证业务逻辑时。
解决方案解析
通过深入研究包的实现方式,我们可以发现测试响应是基于预定义的fixture数据构建的。要自定义响应内容,我们需要:
- 获取默认的fixture数据结构
- 修改需要自定义的部分
- 使用修改后的数据创建测试响应
具体实现代码如下:
use OpenAI\Responses\Chat\CreateResponse;
use OpenAI\Testing\Responses\Fixtures\Chat\CreateResponseFixture;
$fakeOverrides = CreateResponseFixture::ATTRIBUTES;
$fakeOverrides['choices'][0]['message']['content'] = '自定义的测试响应内容';
$response = CreateResponse::fake($fakeOverrides);
技术实现原理
这种方法之所以有效,是因为:
CreateResponseFixture::ATTRIBUTES
包含了完整的响应数据结构- 我们可以安全地修改其中的
content
字段而不破坏其他必要属性 fake()
方法会基于我们提供的数据构建响应对象
实际应用建议
在实际项目中,我们可以将这种定制化响应封装为测试辅助函数:
function fakeChatResponse(string $content): CreateResponse
{
$fakeOverrides = CreateResponseFixture::ATTRIBUTES;
$fakeOverrides['choices'][0]['message']['content'] = $content;
return CreateResponse::fake($fakeOverrides);
}
这样在测试用例中可以更简洁地使用:
$response = fakeChatResponse('测试特定的业务逻辑响应');
总结
通过理解OpenAI PHP Laravel包的测试机制,我们可以灵活地定制测试响应内容。这种方法不仅适用于简单的文本响应,也可以用于模拟复杂的JSON结构响应,满足各种测试场景的需求。掌握这一技巧将显著提升基于OpenAI API的应用测试效率和质量。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
455

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
607
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4