rbenv-bundler 技术文档
1. 安装指南
1.1 安装 rbenv
在安装 rbenv-bundler
插件之前,您需要先安装 rbenv
。请确保您已经按照 rbenv 的文档正确安装并配置了 rbenv
,并且您的 Bash 环境已经正确设置。
1.2 安装 rbenv-bundler 插件
您可以通过以下两种方式安装 rbenv-bundler
插件:
方式一:通过 Git 克隆
$ git clone -- https://github.com/carsomyr/rbenv-bundler.git \
~/.rbenv/plugins/bundler
方式二:通过 Homebrew 安装
$ brew install rbenv-bundler
1.3 确保 Bundler 已安装
在安装插件后,请确保系统中有一个 1.8.7
及以上版本的 Ruby,并且已经安装了 Bundler
gem。您可以通过以下命令检查:
$ ruby -r bundler -e "puts RUBY_VERSION"
如果输出类似于 2.1.4
,则表示 Bundler 已正确安装。
2. 项目的使用说明
2.1 启用插件
rbenv-bundler
插件是选择性启用的。如果您希望启用它,请运行以下命令:
$ rbenv bundler on
如果您想禁用插件,可以运行:
$ rbenv bundler off
2.2 在项目中使用
在 Bundler 控制的项目目录中,您需要执行以下步骤:
-
设置项目使用的 Ruby 版本:
$ rbenv local 2.1.4
-
安装与 Ruby 版本对应的 Bundler gem:
$ gem install bundler
-
如果项目已经有
Gemfile
,请运行以下命令安装依赖:$ bundle install
-
插件会在
bundle install
或bundle update
后自动执行rbenv rehash
,因此您无需手动执行。 -
您可以使用
rbenv which
命令查看 Bundler 安装的 gem 可执行文件的位置:$ rbenv which rake
输出应类似于
${RBENV_ROOT}/versions/2.1.4/lib/ruby/gems/2.1.0/gems/rake-10.3.2/bin/rake
。 -
现在,您可以直接运行
rake
命令,而无需输入bundle exec rake
:$ rake
3. 项目 API 使用文档
3.1 rbenv bundler on
启用 rbenv-bundler
插件。启用后,插件会自动处理 Bundler 安装的 gem 可执行文件路径。
3.2 rbenv bundler off
禁用 rbenv-bundler
插件。禁用后,插件将不再处理 Bundler 安装的 gem 可执行文件路径。
3.3 rbenv rehash
在安装新的 Ruby 版本或 gem 后,您需要运行 rbenv rehash
来更新 shims。在 rbenv-bundler
插件中,rehash
会在 bundle install
或 bundle update
后自动执行。
3.4 rbenv which <command>
查看指定命令的路径。如果该命令是通过 Bundler 安装的 gem 可执行文件,rbenv which
将返回 Bundler 安装的路径。
4. 项目安装方式
4.1 通过 Git 克隆安装
您可以通过 Git 克隆的方式将 rbenv-bundler
插件安装到 ~/.rbenv/plugins/bundler
目录:
$ git clone -- https://github.com/carsomyr/rbenv-bundler.git \
~/.rbenv/plugins/bundler
4.2 通过 Homebrew 安装
如果您使用的是 macOS 系统,可以通过 Homebrew 安装 rbenv-bundler
插件:
$ brew install rbenv-bundler
4.3 确保 Bundler 已安装
无论通过哪种方式安装插件,都需要确保系统中有一个 1.8.7
及以上版本的 Ruby,并且已经安装了 Bundler
gem。您可以通过以下命令检查:
$ ruby -r bundler -e "puts RUBY_VERSION"
如果输出类似于 2.1.4
,则表示 Bundler 已正确安装。
通过本文档,您应该能够顺利安装并使用 rbenv-bundler
插件,简化在 Bundler 控制的项目中的 gem 可执行文件管理。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









