rbenv-bundler 技术文档
1. 安装指南
1.1 安装 rbenv
在安装 rbenv-bundler
插件之前,您需要先安装 rbenv
。请确保您已经按照 rbenv 的文档正确安装并配置了 rbenv
,并且您的 Bash 环境已经正确设置。
1.2 安装 rbenv-bundler 插件
您可以通过以下两种方式安装 rbenv-bundler
插件:
方式一:通过 Git 克隆
$ git clone -- https://github.com/carsomyr/rbenv-bundler.git \
~/.rbenv/plugins/bundler
方式二:通过 Homebrew 安装
$ brew install rbenv-bundler
1.3 确保 Bundler 已安装
在安装插件后,请确保系统中有一个 1.8.7
及以上版本的 Ruby,并且已经安装了 Bundler
gem。您可以通过以下命令检查:
$ ruby -r bundler -e "puts RUBY_VERSION"
如果输出类似于 2.1.4
,则表示 Bundler 已正确安装。
2. 项目的使用说明
2.1 启用插件
rbenv-bundler
插件是选择性启用的。如果您希望启用它,请运行以下命令:
$ rbenv bundler on
如果您想禁用插件,可以运行:
$ rbenv bundler off
2.2 在项目中使用
在 Bundler 控制的项目目录中,您需要执行以下步骤:
-
设置项目使用的 Ruby 版本:
$ rbenv local 2.1.4
-
安装与 Ruby 版本对应的 Bundler gem:
$ gem install bundler
-
如果项目已经有
Gemfile
,请运行以下命令安装依赖:$ bundle install
-
插件会在
bundle install
或bundle update
后自动执行rbenv rehash
,因此您无需手动执行。 -
您可以使用
rbenv which
命令查看 Bundler 安装的 gem 可执行文件的位置:$ rbenv which rake
输出应类似于
${RBENV_ROOT}/versions/2.1.4/lib/ruby/gems/2.1.0/gems/rake-10.3.2/bin/rake
。 -
现在,您可以直接运行
rake
命令,而无需输入bundle exec rake
:$ rake
3. 项目 API 使用文档
3.1 rbenv bundler on
启用 rbenv-bundler
插件。启用后,插件会自动处理 Bundler 安装的 gem 可执行文件路径。
3.2 rbenv bundler off
禁用 rbenv-bundler
插件。禁用后,插件将不再处理 Bundler 安装的 gem 可执行文件路径。
3.3 rbenv rehash
在安装新的 Ruby 版本或 gem 后,您需要运行 rbenv rehash
来更新 shims。在 rbenv-bundler
插件中,rehash
会在 bundle install
或 bundle update
后自动执行。
3.4 rbenv which <command>
查看指定命令的路径。如果该命令是通过 Bundler 安装的 gem 可执行文件,rbenv which
将返回 Bundler 安装的路径。
4. 项目安装方式
4.1 通过 Git 克隆安装
您可以通过 Git 克隆的方式将 rbenv-bundler
插件安装到 ~/.rbenv/plugins/bundler
目录:
$ git clone -- https://github.com/carsomyr/rbenv-bundler.git \
~/.rbenv/plugins/bundler
4.2 通过 Homebrew 安装
如果您使用的是 macOS 系统,可以通过 Homebrew 安装 rbenv-bundler
插件:
$ brew install rbenv-bundler
4.3 确保 Bundler 已安装
无论通过哪种方式安装插件,都需要确保系统中有一个 1.8.7
及以上版本的 Ruby,并且已经安装了 Bundler
gem。您可以通过以下命令检查:
$ ruby -r bundler -e "puts RUBY_VERSION"
如果输出类似于 2.1.4
,则表示 Bundler 已正确安装。
通过本文档,您应该能够顺利安装并使用 rbenv-bundler
插件,简化在 Bundler 控制的项目中的 gem 可执行文件管理。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









