ktransformers项目双路服务器性能优化实践与深度解析
2025-05-16 11:47:05作者:彭桢灵Jeremy
在基于ktransformers项目进行大模型推理时,双路服务器配置下的性能优化是一个值得深入探讨的技术话题。本文将系统性地介绍如何通过NUMA架构调优、BIOS参数配置等手段,显著提升R1Q4KM等大语言模型的推理性能。
一、NUMA架构对性能的影响
NUMA(非统一内存访问)架构是现代多路服务器的核心设计。当使用双路AMD EPYC或Intel Xeon处理器时,内存访问存在本地节点与远程节点的区别:
- NUMA感知编译:通过设置
USE_NUMA=1编译参数,ktransformers可以实现NUMA感知的内存分配。但需注意,在Intel平台上此设置会导致内存占用翻倍(每个NUMA节点复制完整模型) - AMD特有优化:对于EPYC处理器,BIOS中的NPS(NUMA Per Socket)设置尤为关键。NPS0模式能提供更好的跨插槽内存带宽
二、关键性能调优手段
1. 内存子系统优化
- 建议配置1TB以上内存以满足大模型需求
- 使用
numactl --hardware命令验证NUMA拓扑结构 - 通过Intel MLC工具测试实际内存带宽:
echo 4000 | sudo tee /proc/sys/vm/nr_hugepages sudo ./Linux/mlc
2. BIOS关键设置
- Intel平台:建议启用所有内存通道的交织(Interleaving)模式
- AMD平台:
- NPS0/NPS1模式选择需结合实际测试
- 内存交错设置对性能影响显著
3. 编译与运行时优化
- 推荐使用最新代码库而非特定版本标签
- 对于支持AMX指令集的Intel新一代处理器,可探索指令级优化
- 大页内存配置(如4000个2MB大页)能有效降低TLB缺失率
三、典型性能指标
在优化良好的双路服务器上,R1Q4KM模型可达到:
- 约17 TPS(Tokens Per Second)的推理速度
- 内存带宽利用率超过200GB/s
- 不同读/写比例下的带宽表现差异需特别关注
四、问题排查建议
当遇到性能瓶颈时,建议:
- 完整重装系统以排除软件环境干扰
- 对比不同NUMA配置下的
mlc测试结果 - 监控实际内存占用,避免因NUMA设置导致的内存浪费
- 对于AMD平台,重点验证NPS模式与内存交错设置的组合效果
通过系统级的调优,双路服务器在大模型推理场景下可以发挥出接近理论值的性能表现。建议用户根据具体硬件平台选择最适合的优化组合,并通过标准化测试工具持续验证优化效果。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26