Apache Fury 反序列化时处理慢速输入流的优化方案
2025-06-25 02:30:16作者:毕习沙Eudora
Apache Fury 是一个高性能的序列化框架,但在处理慢速输入流(如 GZIP 压缩流)时可能会遇到问题。本文将深入分析这个问题及其解决方案。
问题背景
当使用 Fury 框架从 GZIP 压缩的输入流中反序列化多个对象时,可能会遇到 IllegalArgumentException 异常。这是因为 Fury 的 readToBufferFromStream 方法假设输入流能够一次性读取完整的序列化数据,而实际上 GZIP 等压缩流可能会分批返回数据。
问题重现
考虑以下典型使用场景:
try (InputStream input = new GZIPInputStream(new FileInputStream("test.dat.gz"))) {
while (input.available() > 0) {
MyClass obj = (MyClass) fury.deserialize(input);
}
}
当输入流无法一次性提供完整数据时,Fury 会抛出异常,因为现有的实现要求必须完整读取4字节的长度信息和后续的对象数据。
技术分析
问题的根源在于 readToBufferFromStream 方法的实现过于理想化,没有考虑输入流可能分批返回数据的情况。原始实现直接调用 inputStream.read() 并期望一次性读取所有数据,这在网络传输或压缩流等场景下往往不成立。
解决方案
通过引入一个辅助方法 readBytes,可以实现对输入流的分批读取:
private static void readToBufferFromStream(InputStream inputStream, MemoryBuffer buffer)
throws IOException {
buffer.readerIndex(0);
int read = readBytes(inputStream, buffer.getHeapMemory(), 0, 4);
Preconditions.checkArgument(read == 4);
int size = buffer.readInt();
buffer.ensure(4 + size);
read = readBytes(inputStream, buffer.getHeapMemory(), 4, size);
Preconditions.checkArgument(read == size);
}
private static int readBytes(InputStream inputStream, byte[] buffer,
int offset, int size) throws IOException {
int read = 0;
int count = 0;
while (read < size) {
if ((count = inputStream.read(buffer, offset + read, size - read)) == -1) {
break;
}
read += count;
}
return (read == 0 && count == -1) ? -1 : read;
}
这个改进方案具有以下特点:
- 使用循环读取确保获取足够的数据量
- 正确处理流结束的情况(返回-1)
- 保持原有的参数校验逻辑
- 兼容各种类型的输入流,包括慢速流
实际应用价值
这个改进使得 Fury 框架能够更好地处理以下场景:
- 从压缩流(GZIP、ZIP等)中反序列化数据
- 网络传输场景下的分批数据传输
- 大对象的分块读取
- 任何可能产生数据延迟的输入源
总结
通过对 Fury 反序列化过程的这一优化,显著提高了框架在处理慢速输入流时的健壮性和兼容性。这种改进对于需要处理压缩数据或网络传输数据的应用场景尤为重要,确保了 Fury 在各种复杂环境下都能可靠工作。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868