ems 的安装和配置教程
项目基础介绍和主要编程语言
EMS(Extended Memory Semantics)是一个开源项目,旨在为 Node.js、Python 以及 C/C++ 提供持久的共享对象内存和并行处理功能。该项目通过统一同步和存储原语来解决并行编程中的多个挑战,包括进程间对象共享、同步和对象一致性管理、非易失性内存和辅助存储的持久化,以及进程间的动态负载均衡等。
EMS 支持多种并行执行模型,如 Fork-Join Multiprocess(分支合并多进程)、Bulk Synchronous Parallel(大规模同步并行)以及用户自定义模型。它还提供了原子操作,如原子读-修改-写操作,并支持 JSON 数据类型的操作。
该项目主要使用 C++ 进行开发,同时也涉及 Node.js 和 Python 的绑定。
项目使用的关键技术和框架
EMS 使用了以下关键技术和框架:
- 共享内存:允许不同语言编写的进程之间共享内存。
- 原子操作:确保在并行环境下的数据一致性。
- 并行执行模型:支持多种并行计算模型以适应不同的编程需求。
- JSON 数据类型:操作基于 JSON 的数据结构,方便不同语言之间的数据交换。
项目安装和配置的准备工作
在开始安装 EMS 之前,请确保您的系统已安装以下依赖:
- Node.js:EMS 需要与 Node.js 配合使用,因此请确保已安装 Node.js 环境。
- Python:部分功能可能需要 Python 支持,建议安装 Python 2 和 Python 3。
- C++ 编译环境:由于 EMS 部分组件是用 C++ 编写,需要 C++ 编译器来编译源码。
详细安装步骤
-
克隆项目仓库
打开命令行工具,执行以下命令以克隆 EMS 项目:
git clone https://github.com/mogill/ems.git cd ems -
安装 Node.js 依赖
在 EMS 项目目录中,使用 npm 安装 Node.js 依赖:
npm install -
编译 C++ 组件
在项目目录中,找到 C++ 源文件并使用编译器编译。具体的编译命令可能会根据您的系统环境有所不同,通常情况下,您可能需要执行类似下面的命令:
g++ -o ems_module ems_module.cpp请确保将
ems_module.cpp替换为实际的源文件名。 -
安装 Python 绑定
如果需要 Python 绑定,您可能需要安装相应的 Python 库和模块。这通常可以通过 Python 的包管理器 pip 来完成:
pip install ems-python-binding请替换
ems-python-binding为实际的 Python 绑定库名称。 -
测试安装
最后,您可以通过运行项目提供的测试脚本来验证安装是否成功:
make test如果测试通过,则表示 EMS 已经成功安装并可以使用了。
以上步骤是在一般情况下进行的,具体安装过程可能会因操作系统的不同而有所差异。如果遇到问题,请查阅项目的官方文档或向项目维护者寻求帮助。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00