FlagEmbedding项目中的大模型预训练数据处理内存优化实践
2025-05-25 14:11:23作者:滑思眉Philip
问题背景
在使用FlagEmbedding项目进行大模型预训练数据准备时,用户遇到了内存不足的问题。具体表现为在运行main.pretrain_data脚本处理2B规模的预训练数据时,任务因内存不足被系统终止。该用户的机器配置为250GB内存,但在处理CommonCrawl数据集时仍然出现内存耗尽的情况。
技术分析
这种现象在大规模数据处理中较为常见,主要原因在于:
- CommonCrawl数据集规模庞大,单次加载全部数据会消耗大量内存
- 数据处理过程中可能产生大量中间变量
- 并行处理(num_proc=16)虽然提高了速度,但也增加了内存压力
解决方案
方案一:移除CommonCrawl数据集
最简单的解决方案是直接移除CommonCrawl数据集,这种方法虽然可行,但会损失约52.2%的训练数据,可能影响模型最终性能。
方案二:分阶段处理数据(推荐)
更专业的做法是将数据处理分为两个阶段:
-
第一阶段处理CommonCrawl数据
- 创建专用配置文件
slimpajama-part1.json - 仅包含CommonCrawl数据集配置
- 运行单独的数据处理命令
- 创建专用配置文件
-
第二阶段处理其他数据集
- 创建另一个配置文件
slimpajama-part2.json - 包含C4、GitHub、Book、ArXiv、Wiki、StackExchange等数据集
- 运行单独的数据处理命令
- 创建另一个配置文件
在后续预训练阶段,通过--train_data参数同时指定两个阶段生成的数据目录即可。
技术细节与注意事项
-
配置文件设计:配置文件中需要明确定义各数据集的混合比例(mixture)和平均token数量(num_tokens_avg)
-
Llama-3的特殊性:值得注意的是,使用打包数据(packed data)预训练Llama-3可能导致性能下降,这与Llama-3修改了注意力掩码机制有关,它禁止了跨文档边界的自注意力计算。
-
内存管理:对于超大模型(如Llama-3),建议采用文档级别的数据处理方式而非打包方式,这能更好地控制内存使用。
最佳实践建议
- 对于内存受限的环境,始终采用分阶段数据处理策略
- 监控内存使用情况,适当调整num_proc参数
- 针对不同模型架构选择合适的数据处理方式
- 在处理前评估各数据集的内存需求,合理规划处理顺序
通过这种分阶段处理的方法,可以在有限的内存资源下完成大规模预训练数据的准备工作,同时保证数据的完整性和模型训练的效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110