FlagEmbedding项目中的大模型预训练数据处理内存优化实践
2025-05-25 22:33:51作者:滑思眉Philip
问题背景
在使用FlagEmbedding项目进行大模型预训练数据准备时,用户遇到了内存不足的问题。具体表现为在运行main.pretrain_data脚本处理2B规模的预训练数据时,任务因内存不足被系统终止。该用户的机器配置为250GB内存,但在处理CommonCrawl数据集时仍然出现内存耗尽的情况。
技术分析
这种现象在大规模数据处理中较为常见,主要原因在于:
- CommonCrawl数据集规模庞大,单次加载全部数据会消耗大量内存
- 数据处理过程中可能产生大量中间变量
- 并行处理(num_proc=16)虽然提高了速度,但也增加了内存压力
解决方案
方案一:移除CommonCrawl数据集
最简单的解决方案是直接移除CommonCrawl数据集,这种方法虽然可行,但会损失约52.2%的训练数据,可能影响模型最终性能。
方案二:分阶段处理数据(推荐)
更专业的做法是将数据处理分为两个阶段:
-
第一阶段处理CommonCrawl数据
- 创建专用配置文件
slimpajama-part1.json - 仅包含CommonCrawl数据集配置
- 运行单独的数据处理命令
- 创建专用配置文件
-
第二阶段处理其他数据集
- 创建另一个配置文件
slimpajama-part2.json - 包含C4、GitHub、Book、ArXiv、Wiki、StackExchange等数据集
- 运行单独的数据处理命令
- 创建另一个配置文件
在后续预训练阶段,通过--train_data参数同时指定两个阶段生成的数据目录即可。
技术细节与注意事项
-
配置文件设计:配置文件中需要明确定义各数据集的混合比例(mixture)和平均token数量(num_tokens_avg)
-
Llama-3的特殊性:值得注意的是,使用打包数据(packed data)预训练Llama-3可能导致性能下降,这与Llama-3修改了注意力掩码机制有关,它禁止了跨文档边界的自注意力计算。
-
内存管理:对于超大模型(如Llama-3),建议采用文档级别的数据处理方式而非打包方式,这能更好地控制内存使用。
最佳实践建议
- 对于内存受限的环境,始终采用分阶段数据处理策略
- 监控内存使用情况,适当调整num_proc参数
- 针对不同模型架构选择合适的数据处理方式
- 在处理前评估各数据集的内存需求,合理规划处理顺序
通过这种分阶段处理的方法,可以在有限的内存资源下完成大规模预训练数据的准备工作,同时保证数据的完整性和模型训练的效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134