speedtest 的安装和配置教程
2025-05-25 14:52:51作者:滑思眉Philip
项目基础介绍
speedtest 是一个使用 Docker 容器来测试网络带宽的开源项目。它可以周期性地运行,并将测试结果保存到 InfluxDB 数据库中,便于后续的视觉化展示或长期记录。该项目主要使用 Shell 脚本和 Dockerfile 进行编程。
项目使用的关键技术和框架
- Docker:用于创建容器化环境,确保软件能在不同系统中一致运行。
- Shell 脚本:用于编写测试网络带宽的脚本。
- InfluxDB:一个时间序列数据库,用于存储和检索时间标记的度量数据。
- Grafana:一个用于可视化数据的开源平台,可以与 InfluxDB 配合使用。
准备工作
在开始安装和配置之前,请确保以下环境已经安装在您的系统上:
- Docker
- Docker Compose
- InfluxDB
- Grafana
安装步骤
-
克隆项目仓库 首先,需要从 GitHub 上克隆
speedtest项目到本地:git clone https://github.com/robinmanuelthiel/speedtest.git cd speedtest -
构建 Docker 镜像(如果需要) 如果没有现成的 Docker 镜像,可以通过以下命令构建:
docker build -t robinmanuelthiel/speedtest . -
运行 speedtest 容器 使用以下命令运行
speedtest容器:docker run --rm robinmanuelthiel/speedtest:latest运行结果将显示您的下载速度、上传速度和延迟。
-
配置周期性测试 如果需要周期性运行测试,可以设置环境变量
LOOP为true,并指定LOOP_DELAY为希望的延迟时间(单位:秒):docker run --rm -e LOOP=true -e LOOP_DELAY=60 robinmanuelthiel/speedtest:latest -
将结果保存到 InfluxDB 如果要将结果保存到 InfluxDB,请确保
DB_SAVE环境变量设置为true,并配置正确的数据库连接信息:docker run --rm -e DB_SAVE=true -e DB_HOST=http://localhost:8086 -e DB_NAME=speedtest -e DB_USERNAME=admin -e DB_PASSWORD=password robinmanuelthiel/speedtest:latest -
使用 Grafana 可视化数据 若要使用 Grafana 可视化数据,首先确保 Grafana 和 InfluxDB 均已启动。然后,在 Grafana 中添加 InfluxDB 作为数据源,并创建一个新的仪表板,配置相应的查询以显示网络速度。
通过以上步骤,您可以成功安装和配置 speedtest 项目,并利用 Docker 容器来测试和记录您的网络带宽。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.36 K
仓颉编程语言运行时与标准库。
Cangjie
122
95
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
83
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
77
109
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
997
588
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
580
114
LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
26