Uni-Perceiver 项目使用教程
2024-08-17 14:21:56作者:伍霜盼Ellen
1. 项目的目录结构及介绍
Uni-Perceiver 项目的目录结构如下:
Uni-Perceiver/
├── configs/
├── data/
├── figs/
├── tools/
├── uniperceiver/
├── .gitignore
├── LICENSE
├── README.md
├── main.py
├── requirements.txt
├── run.sh
├── slurm_run.sh
目录介绍
configs/: 包含项目的配置文件。data/: 用于存放数据文件。figs/: 存放项目相关的图表文件。tools/: 包含一些实用工具脚本。uniperceiver/: 项目的主要代码目录。.gitignore: Git 忽略文件配置。LICENSE: 项目的许可证文件。README.md: 项目介绍和使用说明。main.py: 项目的启动文件。requirements.txt: 项目依赖的 Python 包列表。run.sh: 运行项目的脚本。slurm_run.sh: 用于 SLURM 集群的运行脚本。
2. 项目的启动文件介绍
项目的启动文件是 main.py。这个文件负责初始化项目并启动主要的训练或推理过程。以下是 main.py 的基本结构和功能介绍:
# main.py
import argparse
import os
from uniperceiver.trainer import Trainer
def main():
parser = argparse.ArgumentParser(description="Uni-Perceiver Training and Inference")
parser.add_argument("--config", default="configs/default.yaml", help="Path to the config file")
parser.add_argument("--mode", default="train", choices=["train", "eval"], help="Mode: train or eval")
args = parser.parse_args()
# 加载配置文件
config = load_config(args.config)
# 初始化训练器
trainer = Trainer(config)
# 根据模式选择训练或评估
if args.mode == "train":
trainer.train()
elif args.mode == "eval":
trainer.evaluate()
if __name__ == "__main__":
main()
功能介绍
argparse: 用于解析命令行参数。uniperceiver.trainer.Trainer: 训练器类,负责训练和评估模型。load_config: 加载配置文件的函数。main: 主函数,根据命令行参数选择训练或评估模式。
3. 项目的配置文件介绍
项目的配置文件位于 configs/ 目录下,通常是一个 YAML 文件。以下是一个示例配置文件的内容:
# configs/default.yaml
model:
name: "Uni-Perceiver"
parameters:
learning_rate: 0.001
batch_size: 32
data:
train: "data/train.txt"
eval: "data/eval.txt"
train:
epochs: 10
save_interval: 1
eval:
metrics: ["accuracy", "f1_score"]
配置文件介绍
model: 定义模型的名称和参数。name: 模型名称。parameters: 模型的训练参数,如学习率和批量大小。
data: 定义数据路径。train: 训练数据路径。eval: 评估数据路径。
train: 定义训练相关的参数。epochs: 训练轮数。save_interval: 模型保存间隔。
eval: 定义评估相关的参数。metrics: 评估指标,如准确率和 F1 分数。
通过以上配置文件,可以灵活地调整模型的训练和评估参数,以适应不同的需求。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134