首页
/ Azure-TDSP-Utilities 使用教程

Azure-TDSP-Utilities 使用教程

2024-09-23 13:13:06作者:滑思眉Philip

1. 项目介绍

Azure-TDSP-Utilities 是微软团队数据科学过程(TDSP)的一部分,提供了一系列用于数据科学工作的实用工具和脚本。这些工具旨在帮助数据科学家更高效地进行数据探索、分析和建模。项目的主要功能包括交互式数据探索与分析(IDEAR)和自动化建模与报告(AMAR)。

2. 项目快速启动

2.1 克隆项目

首先,克隆 Azure-TDSP-Utilities 仓库到本地:

git clone https://github.com/Azure/Azure-TDSP-Utilities.git
cd Azure-TDSP-Utilities

2.2 安装依赖

根据你使用的工具(R、MRS、Python),安装相应的依赖包。例如,如果你使用的是 Python 版本的 IDEAR,可以运行以下命令:

pip install -r requirements.txt

2.3 运行示例

项目中提供了一些示例数据,你可以直接运行这些示例来体验工具的功能。例如,运行 Python 版本的 IDEAR:

python scripts/idear_python.py

3. 应用案例和最佳实践

3.1 数据探索与分析

在数据科学项目中,数据探索与分析是至关重要的第一步。Azure-TDSP-Utilities 提供了 IDEAR 工具,帮助你快速可视化和分析数据。你可以使用 IDEAR 生成数据概览报告,识别数据中的模式和异常值。

3.2 自动化建模

自动化建模工具(AMAR)可以帮助你快速生成多个模型的性能报告,从而选择最佳模型。你可以通过配置文件定义不同的模型参数,AMAR 会自动运行这些模型并生成详细的报告。

3.3 最佳实践

  • 数据预处理:在使用 IDEAR 进行数据探索之前,确保数据已经过必要的清洗和预处理。
  • 模型选择:使用 AMAR 时,建议先进行小规模实验,逐步扩大模型范围,以找到最佳模型。
  • 文档记录:使用项目提供的文档模板,详细记录每个步骤和决策,便于团队协作和项目复盘。

4. 典型生态项目

4.1 Azure Machine Learning

Azure Machine Learning 是微软提供的机器学习平台,与 Azure-TDSP-Utilities 结合使用,可以实现从数据准备到模型部署的全流程自动化。

4.2 Azure Databricks

Azure Databricks 是一个基于 Apache Spark 的分析平台,与 Azure-TDSP-Utilities 结合使用,可以加速大数据处理和分析任务。

4.3 Azure SQL Database

Azure SQL Database 提供了可扩展的关系型数据库服务,适合存储和管理数据科学项目中的结构化数据。

通过这些生态项目的结合,Azure-TDSP-Utilities 可以更好地支持复杂的数据科学项目,提升工作效率和项目成功率。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
1