Azure-TDSP-Utilities 使用教程
1. 项目介绍
Azure-TDSP-Utilities
是微软团队数据科学过程(TDSP)的一部分,提供了一系列用于数据科学工作的实用工具和脚本。这些工具旨在帮助数据科学家更高效地进行数据探索、分析和建模。项目的主要功能包括交互式数据探索与分析(IDEAR)和自动化建模与报告(AMAR)。
2. 项目快速启动
2.1 克隆项目
首先,克隆 Azure-TDSP-Utilities
仓库到本地:
git clone https://github.com/Azure/Azure-TDSP-Utilities.git
cd Azure-TDSP-Utilities
2.2 安装依赖
根据你使用的工具(R、MRS、Python),安装相应的依赖包。例如,如果你使用的是 Python 版本的 IDEAR,可以运行以下命令:
pip install -r requirements.txt
2.3 运行示例
项目中提供了一些示例数据,你可以直接运行这些示例来体验工具的功能。例如,运行 Python 版本的 IDEAR:
python scripts/idear_python.py
3. 应用案例和最佳实践
3.1 数据探索与分析
在数据科学项目中,数据探索与分析是至关重要的第一步。Azure-TDSP-Utilities
提供了 IDEAR 工具,帮助你快速可视化和分析数据。你可以使用 IDEAR 生成数据概览报告,识别数据中的模式和异常值。
3.2 自动化建模
自动化建模工具(AMAR)可以帮助你快速生成多个模型的性能报告,从而选择最佳模型。你可以通过配置文件定义不同的模型参数,AMAR 会自动运行这些模型并生成详细的报告。
3.3 最佳实践
- 数据预处理:在使用 IDEAR 进行数据探索之前,确保数据已经过必要的清洗和预处理。
- 模型选择:使用 AMAR 时,建议先进行小规模实验,逐步扩大模型范围,以找到最佳模型。
- 文档记录:使用项目提供的文档模板,详细记录每个步骤和决策,便于团队协作和项目复盘。
4. 典型生态项目
4.1 Azure Machine Learning
Azure Machine Learning
是微软提供的机器学习平台,与 Azure-TDSP-Utilities
结合使用,可以实现从数据准备到模型部署的全流程自动化。
4.2 Azure Databricks
Azure Databricks
是一个基于 Apache Spark 的分析平台,与 Azure-TDSP-Utilities
结合使用,可以加速大数据处理和分析任务。
4.3 Azure SQL Database
Azure SQL Database
提供了可扩展的关系型数据库服务,适合存储和管理数据科学项目中的结构化数据。
通过这些生态项目的结合,Azure-TDSP-Utilities
可以更好地支持复杂的数据科学项目,提升工作效率和项目成功率。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0360Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++086Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









