Azure-TDSP-Utilities 使用教程
1. 项目介绍
Azure-TDSP-Utilities 是微软团队数据科学过程(TDSP)的一部分,提供了一系列用于数据科学工作的实用工具和脚本。这些工具旨在帮助数据科学家更高效地进行数据探索、分析和建模。项目的主要功能包括交互式数据探索与分析(IDEAR)和自动化建模与报告(AMAR)。
2. 项目快速启动
2.1 克隆项目
首先,克隆 Azure-TDSP-Utilities 仓库到本地:
git clone https://github.com/Azure/Azure-TDSP-Utilities.git
cd Azure-TDSP-Utilities
2.2 安装依赖
根据你使用的工具(R、MRS、Python),安装相应的依赖包。例如,如果你使用的是 Python 版本的 IDEAR,可以运行以下命令:
pip install -r requirements.txt
2.3 运行示例
项目中提供了一些示例数据,你可以直接运行这些示例来体验工具的功能。例如,运行 Python 版本的 IDEAR:
python scripts/idear_python.py
3. 应用案例和最佳实践
3.1 数据探索与分析
在数据科学项目中,数据探索与分析是至关重要的第一步。Azure-TDSP-Utilities 提供了 IDEAR 工具,帮助你快速可视化和分析数据。你可以使用 IDEAR 生成数据概览报告,识别数据中的模式和异常值。
3.2 自动化建模
自动化建模工具(AMAR)可以帮助你快速生成多个模型的性能报告,从而选择最佳模型。你可以通过配置文件定义不同的模型参数,AMAR 会自动运行这些模型并生成详细的报告。
3.3 最佳实践
- 数据预处理:在使用 IDEAR 进行数据探索之前,确保数据已经过必要的清洗和预处理。
- 模型选择:使用 AMAR 时,建议先进行小规模实验,逐步扩大模型范围,以找到最佳模型。
- 文档记录:使用项目提供的文档模板,详细记录每个步骤和决策,便于团队协作和项目复盘。
4. 典型生态项目
4.1 Azure Machine Learning
Azure Machine Learning 是微软提供的机器学习平台,与 Azure-TDSP-Utilities 结合使用,可以实现从数据准备到模型部署的全流程自动化。
4.2 Azure Databricks
Azure Databricks 是一个基于 Apache Spark 的分析平台,与 Azure-TDSP-Utilities 结合使用,可以加速大数据处理和分析任务。
4.3 Azure SQL Database
Azure SQL Database 提供了可扩展的关系型数据库服务,适合存储和管理数据科学项目中的结构化数据。
通过这些生态项目的结合,Azure-TDSP-Utilities 可以更好地支持复杂的数据科学项目,提升工作效率和项目成功率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00