Sentence-Transformers中如何为Model2Vec蒸馏添加新词元
2025-05-13 15:33:00作者:昌雅子Ethen
在自然语言处理任务中,我们经常需要处理一些特定领域的专有名词或品牌名称。这些词汇如果被分词器错误拆分,可能会影响模型性能。本文将深入探讨在使用Sentence-Transformers库进行Model2Vec蒸馏时,如何有效地添加新词元(token)到分词器中。
问题背景
当使用Model2Vec技术对预训练模型进行蒸馏时,开发者可能会遇到需要添加新词元的情况。例如在商品搜索场景中,我们希望保留特定品牌名称的完整性,而不是让分词器将其拆分为子词。传统的添加词元方法在蒸馏过程中会遇到词汇表大小不一致的问题。
技术挑战
直接向基础模型的分词器添加新词元并保存自定义版本后,在蒸馏过程中会出现词汇表大小不一致的警告。具体表现为:
- 报告词汇量与实际词汇量不符
- 后续微调过程失败
- 新词元的嵌入质量不佳
解决方案演进
初始方案:直接添加词元
开发者最初尝试直接向基础模型的分词器添加新词元:
tokens = ["my_special_token", "my_special_token2"]
base_model = SentenceTransformer("intfloat/multilingual-e5-large")
base_model_module = base_model._first_module()
base_model_module.tokenizer.add_tokens(tokens, special_tokens=True)
base_model_module.auto_model.resize_token_embeddings(len(base_model_module.tokenizer))
这种方法虽然能在文件层面看到新词元,但在蒸馏过程中会出现词汇表不一致的问题。
改进方案:使用vocabulary参数
Model2Vec的最新版本已经支持通过vocabulary参数为多种分词器添加多词词汇:
vocabulary = list(model[0].tokenizer.get_vocab()) + ["my_special_token", "my_special_token2"]
static_embedding = StaticEmbedding.from_distillation(
base_model_path,
vocabulary=vocabulary,
device="cpu",
pca_dims=256,
apply_zipf=True
)
这种方法会:
- 将多词词汇的各子词嵌入取平均
- 生成有意义的组合嵌入
- 适用于现代基于子词的分词器
技术要点
- 词元添加时机:应在蒸馏前而非蒸馏后添加新词元
- 嵌入质量:新词元的初始嵌入质量可能较差,需要通过微调提升
- 分词器兼容性:现代Model2Vec已支持多种分词器类型
- Zipf定律应用:新词元的位置应考虑词汇的频率分布
实践建议
- 使用最新版Model2Vec以获得最佳兼容性
- 为新词元准备足够的训练样本以提升微调效果
- 监控新词元在推理时的表现
- 考虑新词元在Zipf分布中的合理位置
通过合理应用这些技术,开发者可以有效地在Sentence-Transformers的Model2Vec蒸馏过程中添加新词元,从而提升特定领域任务的表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134