AXERA-TECH ax-samples 开源项目教程
2024-08-21 02:07:16作者:郁楠烈Hubert
项目介绍
ax-samples
是由 AXERA-TECH 提供的一个开源项目,旨在展示如何使用 AXERA 芯片进行各种 AI 应用的开发。该项目包含了多个示例代码,涵盖了图像识别、视频处理、语音识别等多个领域,为开发者提供了一个快速入门和深入学习的平台。
项目快速启动
环境准备
在开始之前,请确保您的开发环境已经安装了以下工具和库:
- Git
- CMake
- AXERA 开发工具链
克隆项目
首先,克隆 ax-samples
项目到本地:
git clone https://github.com/AXERA-TECH/ax-samples.git
构建项目
进入项目目录并进行构建:
cd ax-samples
mkdir build
cd build
cmake ..
make
运行示例
构建完成后,您可以运行任意一个示例来验证安装是否成功。例如,运行图像识别示例:
./examples/image_classification/image_classification_example
应用案例和最佳实践
图像识别
图像识别是 ax-samples
中的一个核心示例。通过该示例,开发者可以学习如何使用 AXERA 芯片进行图像分类。以下是一个简单的代码片段,展示了如何加载模型并进行图像分类:
#include "ax_model_runner.h"
int main() {
// 初始化模型运行器
AX_MODEL_RUNNER runner;
runner.load_model("path/to/model.axmodel");
// 加载图像
cv::Mat image = cv::imread("path/to/image.jpg");
// 预处理图像
cv::Mat input_blob = preprocess(image);
// 运行推理
std::vector<AX_MODEL_OUTPUT> outputs = runner.run(input_blob);
// 解析输出
std::string result = postprocess(outputs);
std::cout << "识别结果: " << result << std::endl;
return 0;
}
视频处理
视频处理示例展示了如何使用 AXERA 芯片进行实时视频分析。以下是一个简单的代码片段,展示了如何捕获视频流并进行实时分析:
#include "ax_video_processor.h"
int main() {
// 初始化视频处理器
AX_VIDEO_PROCESSOR processor;
processor.start_capture("path/to/video_device");
while (true) {
// 获取视频帧
cv::Mat frame = processor.get_frame();
// 运行推理
std::vector<AX_MODEL_OUTPUT> outputs = processor.run_inference(frame);
// 解析输出
std::string result = postprocess(outputs);
std::cout << "分析结果: " << result << std::endl;
}
processor.stop_capture();
return 0;
}
典型生态项目
AXERA SDK
AXERA SDK 是 AXERA-TECH 提供的一套开发工具包,包含了丰富的 API 和工具,帮助开发者快速构建基于 AXERA 芯片的应用。通过 ax-samples
项目,开发者可以深入了解如何使用这些 API 进行开发。
AXERA 社区
AXERA 社区是一个活跃的开发者社区,提供了丰富的资源和支持。开发者可以在社区中找到更多的示例代码、教程和问题解答,加速开发进程。
通过 ax-samples
项目,开发者可以快速入门并深入学习如何使用 AXERA 芯片进行 AI 应用开发。希望本教程能为您提供有价值的参考和帮助。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
881
521

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

React Native鸿蒙化仓库
C++
181
264

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
118
78