AXERA-TECH ax-samples 开源项目教程
2024-08-21 03:01:15作者:郁楠烈Hubert
项目介绍
ax-samples
是由 AXERA-TECH 提供的一个开源项目,旨在展示如何使用 AXERA 芯片进行各种 AI 应用的开发。该项目包含了多个示例代码,涵盖了图像识别、视频处理、语音识别等多个领域,为开发者提供了一个快速入门和深入学习的平台。
项目快速启动
环境准备
在开始之前,请确保您的开发环境已经安装了以下工具和库:
- Git
- CMake
- AXERA 开发工具链
克隆项目
首先,克隆 ax-samples
项目到本地:
git clone https://github.com/AXERA-TECH/ax-samples.git
构建项目
进入项目目录并进行构建:
cd ax-samples
mkdir build
cd build
cmake ..
make
运行示例
构建完成后,您可以运行任意一个示例来验证安装是否成功。例如,运行图像识别示例:
./examples/image_classification/image_classification_example
应用案例和最佳实践
图像识别
图像识别是 ax-samples
中的一个核心示例。通过该示例,开发者可以学习如何使用 AXERA 芯片进行图像分类。以下是一个简单的代码片段,展示了如何加载模型并进行图像分类:
#include "ax_model_runner.h"
int main() {
// 初始化模型运行器
AX_MODEL_RUNNER runner;
runner.load_model("path/to/model.axmodel");
// 加载图像
cv::Mat image = cv::imread("path/to/image.jpg");
// 预处理图像
cv::Mat input_blob = preprocess(image);
// 运行推理
std::vector<AX_MODEL_OUTPUT> outputs = runner.run(input_blob);
// 解析输出
std::string result = postprocess(outputs);
std::cout << "识别结果: " << result << std::endl;
return 0;
}
视频处理
视频处理示例展示了如何使用 AXERA 芯片进行实时视频分析。以下是一个简单的代码片段,展示了如何捕获视频流并进行实时分析:
#include "ax_video_processor.h"
int main() {
// 初始化视频处理器
AX_VIDEO_PROCESSOR processor;
processor.start_capture("path/to/video_device");
while (true) {
// 获取视频帧
cv::Mat frame = processor.get_frame();
// 运行推理
std::vector<AX_MODEL_OUTPUT> outputs = processor.run_inference(frame);
// 解析输出
std::string result = postprocess(outputs);
std::cout << "分析结果: " << result << std::endl;
}
processor.stop_capture();
return 0;
}
典型生态项目
AXERA SDK
AXERA SDK 是 AXERA-TECH 提供的一套开发工具包,包含了丰富的 API 和工具,帮助开发者快速构建基于 AXERA 芯片的应用。通过 ax-samples
项目,开发者可以深入了解如何使用这些 API 进行开发。
AXERA 社区
AXERA 社区是一个活跃的开发者社区,提供了丰富的资源和支持。开发者可以在社区中找到更多的示例代码、教程和问题解答,加速开发进程。
通过 ax-samples
项目,开发者可以快速入门并深入学习如何使用 AXERA 芯片进行 AI 应用开发。希望本教程能为您提供有价值的参考和帮助。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0134AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 WebVideoDownloader:高效网页视频抓取工具全面使用指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.31 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
290

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
991
587

Ascend Extension for PyTorch
Python
74
103

仓颉编程语言测试用例。
Cangjie
34
60

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401