liburing项目中io_uring_submit_and_wait()性能问题深度分析
2025-06-26 07:42:36作者:宗隆裙
问题背景
在Linux高性能I/O编程领域,io_uring作为新一代异步I/O框架,以其出色的性能表现获得了广泛关注。然而在实际使用过程中,开发者可能会遇到一些意料之外的性能表现。本文将以liburing项目中io_uring_submit_and_wait()函数的异常行为为切入点,深入分析其背后的技术原理和优化策略。
现象描述
开发者在使用io_uring进行NVMe设备上的随机4K读取时,观察到了以下现象:
- 当提交512个读取请求后调用io_uring_submit_and_wait()时,预期该调用应在70-100微秒内返回部分完成的读取
- 实际行为却是该调用阻塞6-8毫秒,并一次性返回所有512个完成请求
- 这种现象在EXT4文件系统和裸设备(/dev/nvmeXnX)上均会出现
技术分析
1. 请求提交开销
通过详细的测试和分析,发现问题的核心不在于等待部分(wait),而在于提交(submit)阶段。提交大量I/O请求时,内核需要为每个请求执行以下操作:
- 准备NVMe命令
- 处理可能的块设备层限制
- 处理可能的文件系统层操作(如EXT4的atime更新)
- 处理可能的QoS和节流机制
在典型配置下,每个4K读取请求的提交开销约为1.4微秒(约5000个CPU周期)。对于512个请求,累计开销约为700微秒,这与观察到的现象相符。
2. 设备队列深度限制
NVMe设备和内核块层都有队列深度限制:
- 设备本身的硬件队列深度(通常1023)
- 内核通过/sys/block/nvmeXn1/queue/nr_requests设置的软件限制(通常32-64)
- 文件系统可能引入的额外限制
当提交的请求数超过这些限制时,提交过程会出现等待,导致延迟增加。
3. 内核配置影响
默认的发行版内核配置包含多项可能增加I/O路径开销的特性:
- blk-throttle(块设备节流)
- blk-latency(延迟跟踪)
- blk-wbt(回写节流)
- 各种时间戳记录
这些特性虽然对系统稳定性有帮助,但会增加每个I/O请求的处理开销。
优化建议
1. 合理的批量大小
- 避免一次性提交过多请求(如512个)
- 推荐批量大小在32-128之间
- 保持总在途请求数不超过设备队列深度
2. 内核配置优化
对于高性能场景,可以考虑:
- 禁用不必要的块设备层特性
- 调整/sys/block/nvmeXn1/queue/nr_requests
- 使用更新的内核版本(6.8+)
3. io_uring高级特性
- 使用IORING_SETUP_DEFER_TASKRUN延迟任务运行
- 考虑IORING_SETUP_IOPOLL轮询模式(需配合nvme.poll_queues)
- 使用注册文件和注册缓冲区减少开销
4. 编程模式优化
- 将大批量请求拆分为多个小批量提交
- 使用非阻塞方式检查完成状态
- 实现请求提交和完成的流水线处理
性能数据参考
在优化后的测试中,不同批量大小的性能表现:
- 64个请求:约0.5μs/请求
- 128个请求:约0.7μs/请求
- 256个请求:约0.7μs/请求
第一轮测试由于内存访问冷启动会有额外开销,后续轮次性能更稳定。
结论
io_uring的submit-and-wait行为看似"阻塞",实际上是大量请求提交开销的累积表现。通过理解底层机制并采用合理的优化策略,开发者可以充分发挥io_uring的高性能潜力。关键是要平衡批量大小与系统各层的处理能力,避免任何一个环节成为瓶颈。
对于追求极致性能的场景,建议从少量请求开始测试,逐步增加批量大小,同时监控各阶段的延迟变化,找到最适合特定硬件配置的请求调度策略。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140