CassKop 开源项目教程
1. 项目介绍
CassKop 是一个 Kubernetes 操作器,专门用于自动化 Apache Cassandra 的操作。它能够帮助用户在 Kubernetes 环境中轻松部署和管理 Cassandra 集群。CassKop 提供了诸如部署新的机架感知集群、添加/移除节点、配置 Cassandra 和 JVM 参数、升级 JVM 和 Cassandra 版本等功能。
CassKop 是基于 CoreOS 的 operator-sdk 工具和 API 构建的,并且是开源的,遵循 Apache 2.0 许可证。它旨在简化在 Kubernetes 上运行和管理 Cassandra 集群的过程。
2. 项目快速启动
2.1 安装 Helm
首先,确保你已经安装了 Helm。如果没有安装,可以通过以下命令安装:
curl https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 | bash
2.2 添加 Helm 仓库
添加 CassKop 的 Helm 仓库:
helm repo add casskop https://orange-opensource.github.io/casskop/
2.3 安装 CassKop
使用 Helm 安装 CassKop:
helm install casskop casskop/cassandra-operator
2.4 部署 Cassandra 集群
创建一个 Cassandra 集群的 YAML 文件 cassandra-cluster.yaml,内容如下:
apiVersion: "db.orange.com/v1alpha1"
kind: "CassandraCluster"
metadata:
name: "cassandra-demo"
spec:
nodesPerRacks: 3
cassandraImage: "cassandra:3.11"
resources:
requests:
cpu: "500m"
memory: "1Gi"
limits:
cpu: "1"
memory: "2Gi"
然后应用该配置:
kubectl apply -f cassandra-cluster.yaml
2.5 验证部署
检查 Cassandra 集群的状态:
kubectl get pods -l app=cassandra
3. 应用案例和最佳实践
3.1 多租户环境中的 Cassandra 管理
在多租户环境中,CassKop 可以帮助管理多个 Cassandra 集群,每个集群可以在不同的 Kubernetes 命名空间中运行。通过这种方式,可以实现更好的隔离和安全性。
3.2 自动化集群扩展
CassKop 支持自动扩展 Cassandra 集群。当业务需求增加时,可以通过简单的配置调整来增加集群中的节点数量,从而提高系统的处理能力。
3.3 备份和恢复
CassKop 集成了 Cassandra Reaper 用于执行 Cassandra 的在线修复,并且支持多站点管理。此外,CassKop 还提供了备份和恢复功能,确保数据的安全性和可靠性。
4. 典型生态项目
4.1 CoreOS Operator SDK
CassKop 是基于 CoreOS Operator SDK 构建的。Operator SDK 提供了一套工具和 API,帮助开发者创建和管理 Kubernetes 原生应用程序。
4.2 Apache Cassandra
Apache Cassandra 是一个高度可扩展的分布式数据库,适用于需要高可用性和线性扩展能力的应用场景。CassKop 旨在简化在 Kubernetes 上运行和管理 Cassandra 集群的过程。
4.3 Kubernetes
Kubernetes 是一个开源的容器编排平台,用于自动化应用程序的部署、扩展和管理。CassKop 充分利用了 Kubernetes 的强大功能,提供了对 Cassandra 集群的自动化管理。
通过以上步骤,你可以快速上手并开始使用 CassKop 来管理你的 Cassandra 集群。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00