CassKop 开源项目教程
1. 项目介绍
CassKop 是一个 Kubernetes 操作器,专门用于自动化 Apache Cassandra 的操作。它能够帮助用户在 Kubernetes 环境中轻松部署和管理 Cassandra 集群。CassKop 提供了诸如部署新的机架感知集群、添加/移除节点、配置 Cassandra 和 JVM 参数、升级 JVM 和 Cassandra 版本等功能。
CassKop 是基于 CoreOS 的 operator-sdk 工具和 API 构建的,并且是开源的,遵循 Apache 2.0 许可证。它旨在简化在 Kubernetes 上运行和管理 Cassandra 集群的过程。
2. 项目快速启动
2.1 安装 Helm
首先,确保你已经安装了 Helm。如果没有安装,可以通过以下命令安装:
curl https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 | bash
2.2 添加 Helm 仓库
添加 CassKop 的 Helm 仓库:
helm repo add casskop https://orange-opensource.github.io/casskop/
2.3 安装 CassKop
使用 Helm 安装 CassKop:
helm install casskop casskop/cassandra-operator
2.4 部署 Cassandra 集群
创建一个 Cassandra 集群的 YAML 文件 cassandra-cluster.yaml,内容如下:
apiVersion: "db.orange.com/v1alpha1"
kind: "CassandraCluster"
metadata:
name: "cassandra-demo"
spec:
nodesPerRacks: 3
cassandraImage: "cassandra:3.11"
resources:
requests:
cpu: "500m"
memory: "1Gi"
limits:
cpu: "1"
memory: "2Gi"
然后应用该配置:
kubectl apply -f cassandra-cluster.yaml
2.5 验证部署
检查 Cassandra 集群的状态:
kubectl get pods -l app=cassandra
3. 应用案例和最佳实践
3.1 多租户环境中的 Cassandra 管理
在多租户环境中,CassKop 可以帮助管理多个 Cassandra 集群,每个集群可以在不同的 Kubernetes 命名空间中运行。通过这种方式,可以实现更好的隔离和安全性。
3.2 自动化集群扩展
CassKop 支持自动扩展 Cassandra 集群。当业务需求增加时,可以通过简单的配置调整来增加集群中的节点数量,从而提高系统的处理能力。
3.3 备份和恢复
CassKop 集成了 Cassandra Reaper 用于执行 Cassandra 的在线修复,并且支持多站点管理。此外,CassKop 还提供了备份和恢复功能,确保数据的安全性和可靠性。
4. 典型生态项目
4.1 CoreOS Operator SDK
CassKop 是基于 CoreOS Operator SDK 构建的。Operator SDK 提供了一套工具和 API,帮助开发者创建和管理 Kubernetes 原生应用程序。
4.2 Apache Cassandra
Apache Cassandra 是一个高度可扩展的分布式数据库,适用于需要高可用性和线性扩展能力的应用场景。CassKop 旨在简化在 Kubernetes 上运行和管理 Cassandra 集群的过程。
4.3 Kubernetes
Kubernetes 是一个开源的容器编排平台,用于自动化应用程序的部署、扩展和管理。CassKop 充分利用了 Kubernetes 的强大功能,提供了对 Cassandra 集群的自动化管理。
通过以上步骤,你可以快速上手并开始使用 CassKop 来管理你的 Cassandra 集群。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00