CassKop 开源项目教程
1. 项目介绍
CassKop 是一个 Kubernetes 操作器,专门用于自动化 Apache Cassandra 的操作。它能够帮助用户在 Kubernetes 环境中轻松部署和管理 Cassandra 集群。CassKop 提供了诸如部署新的机架感知集群、添加/移除节点、配置 Cassandra 和 JVM 参数、升级 JVM 和 Cassandra 版本等功能。
CassKop 是基于 CoreOS 的 operator-sdk 工具和 API 构建的,并且是开源的,遵循 Apache 2.0 许可证。它旨在简化在 Kubernetes 上运行和管理 Cassandra 集群的过程。
2. 项目快速启动
2.1 安装 Helm
首先,确保你已经安装了 Helm。如果没有安装,可以通过以下命令安装:
curl https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 | bash
2.2 添加 Helm 仓库
添加 CassKop 的 Helm 仓库:
helm repo add casskop https://orange-opensource.github.io/casskop/
2.3 安装 CassKop
使用 Helm 安装 CassKop:
helm install casskop casskop/cassandra-operator
2.4 部署 Cassandra 集群
创建一个 Cassandra 集群的 YAML 文件 cassandra-cluster.yaml
,内容如下:
apiVersion: "db.orange.com/v1alpha1"
kind: "CassandraCluster"
metadata:
name: "cassandra-demo"
spec:
nodesPerRacks: 3
cassandraImage: "cassandra:3.11"
resources:
requests:
cpu: "500m"
memory: "1Gi"
limits:
cpu: "1"
memory: "2Gi"
然后应用该配置:
kubectl apply -f cassandra-cluster.yaml
2.5 验证部署
检查 Cassandra 集群的状态:
kubectl get pods -l app=cassandra
3. 应用案例和最佳实践
3.1 多租户环境中的 Cassandra 管理
在多租户环境中,CassKop 可以帮助管理多个 Cassandra 集群,每个集群可以在不同的 Kubernetes 命名空间中运行。通过这种方式,可以实现更好的隔离和安全性。
3.2 自动化集群扩展
CassKop 支持自动扩展 Cassandra 集群。当业务需求增加时,可以通过简单的配置调整来增加集群中的节点数量,从而提高系统的处理能力。
3.3 备份和恢复
CassKop 集成了 Cassandra Reaper 用于执行 Cassandra 的在线修复,并且支持多站点管理。此外,CassKop 还提供了备份和恢复功能,确保数据的安全性和可靠性。
4. 典型生态项目
4.1 CoreOS Operator SDK
CassKop 是基于 CoreOS Operator SDK 构建的。Operator SDK 提供了一套工具和 API,帮助开发者创建和管理 Kubernetes 原生应用程序。
4.2 Apache Cassandra
Apache Cassandra 是一个高度可扩展的分布式数据库,适用于需要高可用性和线性扩展能力的应用场景。CassKop 旨在简化在 Kubernetes 上运行和管理 Cassandra 集群的过程。
4.3 Kubernetes
Kubernetes 是一个开源的容器编排平台,用于自动化应用程序的部署、扩展和管理。CassKop 充分利用了 Kubernetes 的强大功能,提供了对 Cassandra 集群的自动化管理。
通过以上步骤,你可以快速上手并开始使用 CassKop 来管理你的 Cassandra 集群。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









