Mesa项目中的Boltzman财富模型性能优化分析
2025-06-27 10:18:39作者:姚月梅Lane
性能瓶颈的发现与定位
在Mesa框架的Boltzman财富模型实现中,开发团队发现了一个严重的性能问题。当模型中的智能体数量增加时,运行时间呈非线性增长,这在处理大规模仿真时尤为明显。通过一系列基准测试,团队确定了性能瓶颈并非来自调度器中的AgentSet实现,而是与用户访问模型中所有智能体的方式密切相关。
性能对比实验
团队设计了三种不同实现方案进行对比测试:
- 原始版本:使用标准调度器实现,通过
model.schedule.agents
获取所有智能体 - 测试版本:保留标准调度器,但在智能体中使用预存的列表
- 列表版本:完全用列表替代调度器实现
测试结果显示,原始版本在智能体数量增加时性能急剧下降,而测试版本和列表版本表现相近。这表明问题核心在于智能体如何访问其他智能体,而非调度器本身。
深入分析问题根源
进一步研究发现,当智能体通过random.choice
从AgentSet中选择其他智能体时,每次调用都会:
- 创建一个新的列表
- 解析所有弱引用以检查其有效性
这两个操作导致了性能的显著下降。特别是在大规模仿真中,这种开销会被放大,造成运行时间的非线性增长。
优化方案设计与实现
基于分析结果,团队提出了以下优化措施:
- 重构模型类:将智能体注册逻辑集中到Model类中,简化Agent类代码
- 维护多个AgentSet:Model类主动维护包含所有智能体的AgentSet和按类型分类的AgentSet
- 优化访问方式:提供更高效的智能体获取接口
实现这些优化后,性能得到了显著提升。新版本虽然仍略慢于纯列表实现,但差距已大幅缩小。
性能优化结果
优化后的基准测试显示:
- 对于10000个智能体,优化版本比原始版本快约5倍
- 与纯列表实现相比,优化版本的性能差距在可接受范围内
- 性能增长曲线更加线性,更适合大规模仿真
技术思考与建议
针对Mesa框架的智能体管理,团队提出了几个值得考虑的方向:
- 序列行为优化:考虑将序列行为从AgentSet中分离,创建专门的AgentList
- 模型特定优化:对于像Boltzman这样没有智能体增减的模型,可以预存智能体列表
- API设计改进:提供更清晰的智能体访问接口,避免意外副作用
结论
通过这次性能优化,Mesa框架在处理大规模智能体仿真时的效率得到了显著提升。这不仅解决了Boltzman财富模型的具体问题,也为框架未来的设计提供了有价值的参考。特别是在智能体管理和访问机制方面,这次优化经验将帮助Mesa更好地支持复杂、大规模的仿真场景。
优化后的代码已经合并到主分支,使Mesa 3.0版本重新获得了良好的性能表现,为后续的功能开发和用户使用奠定了坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133