Flux.jl中自定义AbstractMatrix子类型的优化实践
2025-06-12 16:11:00作者:董斯意
摘要
在Flux.jl深度学习框架中,自定义矩阵类型并使其与自动微分(AD)和优化器协同工作是一个常见需求。本文将详细介绍如何创建继承自AbstractMatrix的自定义矩阵类型,并使其完全兼容Flux.jl的自动微分和优化系统。
自定义矩阵类型基础
首先我们定义一个简单的矩阵类型,它由两个标准矩阵相加组成:
struct MyMatrix{T <: Number, U <: AbstractMatrix{T}} <: AbstractMatrix{T}
A::U
B::U
end
这个类型继承自AbstractMatrix,意味着它可以被当作普通矩阵使用。我们需要为其实现基本的矩阵接口:
Base.size(M::MyMatrix) = size(M.A)
Base.getindex(M::MyMatrix, i, j) = M.A[i, j] + M.B[i, j]
矩阵-向量乘法实现
为了使自定义矩阵能够参与神经网络计算,我们需要实现矩阵-向量乘法:
M::MyMatrix * b::AbstractVector = my_mul(M, b)
my_mul(M::MyMatrix, b::AbstractVector) = M.A * b .+ M.B * b
这种实现方式将矩阵乘法分解为两个标准矩阵乘法的和,这在某些场景下可以提高计算效率或实现特殊功能。
自动微分支持
要使自定义矩阵支持自动微分,我们需要处理ChainRules的规则。由于继承自AbstractMatrix会触发一些默认规则,我们需要显式地处理这些情况:
using ChainRulesCore
# 禁用默认的矩阵乘法规则
ChainRulesCore.@opt_out ChainRulesCore.rrule(
::typeof(Base.:*), ::MyMatrix,
::ChainRulesCore.AbstractVecOrMat{<:Union{Real, Complex}}
)
# 自定义矩阵乘法的反向传播规则
function ChainRulesCore.rrule(::typeof(my_mul), M::MyMatrix, b::AbstractVector)
result = M.A * b .+ M.B * b
result, Δ -> (
NoTangent(),
Tangent{typeof(M)}(A = zero(M.A), B = zero(M.B)),
NoTangent(),
)
end
与Flux.jl集成
为了使自定义矩阵能够被Flux的训练系统识别和处理,我们需要使用Functors.jl的功能来指定哪些字段是可训练的:
Flux.Functors.@functor MyMatrix (A, B)
这一步至关重要,它告诉Flux将矩阵内部的A和B字段视为可训练参数,而不是将整个MyMatrix对象视为一个不可分割的参数。
优化器支持
最后,我们需要确保自定义矩阵可以与Flux的优化器协同工作。这通常不需要额外代码,因为Functors.jl已经正确地将矩阵分解为可训练的子组件。
完整示例
将上述所有部分组合起来,我们得到一个完整的、可与Flux.jl协同工作的自定义矩阵类型:
using Flux, ChainRulesCore
import Base: *
struct MyMatrix{T <: Number, U <: AbstractMatrix{T}} <: AbstractMatrix{T}
A::U
B::U
end
# 基本矩阵接口实现
Base.show(io::IO, ::MyMatrix) = print(io, "MyMatrix")
Base.show(io::IO, ::MIME"text/plain", ::MyMatrix) = print(io, "MyMatrix")
Base.size(M::MyMatrix) = size(M.A)
Base.getindex(M::MyMatrix, i, j) = M.A[i, j] + M.B[i, j]
# Flux集成
Flux.Functors.@functor MyMatrix (A, B)
# 矩阵乘法实现
M::MyMatrix * b::AbstractVector = my_mul(M, b)
my_mul(M::MyMatrix, b::AbstractVector) = M.A * b .+ M.B * b
# 自动微分规则
ChainRulesCore.@opt_out ChainRulesCore.rrule(
::typeof(Base.:*), ::MyMatrix,
::ChainRulesCore.AbstractVecOrMat{<:Union{Real, Complex}}
)
function ChainRulesCore.rrule(::typeof(my_mul), M::MyMatrix, b::AbstractVector)
result = M.A * b .+ M.B * b
result, Δ -> (
NoTangent(),
Tangent{typeof(M)}(A = zero(M.A), B = zero(M.B)),
NoTangent(),
)
end
实际应用
创建并训练一个使用自定义矩阵的简单模型:
# 创建自定义矩阵和输入数据
M = MyMatrix(rand(3, 3), rand(3, 3))
x = rand(3)
# 检查梯度计算
grads = Flux.gradient(m -> sum(m * x), M)
# 设置优化器并训练
opt = Flux.setup(Adam(), M)
Flux.train!((m, x) -> sum(m * x), M, [(x)], opt)
总结
在Flux.jl中创建自定义矩阵类型并使其与整个训练流程协同工作需要以下几个关键步骤:
- 正确定义矩阵类型并实现必要的接口方法
- 使用Functors.jl标记可训练字段
- 为自定义操作实现适当的自动微分规则
- 确保矩阵类型能够与优化器协同工作
这种方法不仅适用于简单的矩阵类型,也可以扩展到更复杂的自定义层和操作,为Flux.jl提供了极大的灵活性和扩展能力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1