Flux.jl中自定义AbstractMatrix子类型的优化实践
2025-06-12 19:46:55作者:董斯意
摘要
在Flux.jl深度学习框架中,自定义矩阵类型并使其与自动微分(AD)和优化器协同工作是一个常见需求。本文将详细介绍如何创建继承自AbstractMatrix的自定义矩阵类型,并使其完全兼容Flux.jl的自动微分和优化系统。
自定义矩阵类型基础
首先我们定义一个简单的矩阵类型,它由两个标准矩阵相加组成:
struct MyMatrix{T <: Number, U <: AbstractMatrix{T}} <: AbstractMatrix{T}
A::U
B::U
end
这个类型继承自AbstractMatrix,意味着它可以被当作普通矩阵使用。我们需要为其实现基本的矩阵接口:
Base.size(M::MyMatrix) = size(M.A)
Base.getindex(M::MyMatrix, i, j) = M.A[i, j] + M.B[i, j]
矩阵-向量乘法实现
为了使自定义矩阵能够参与神经网络计算,我们需要实现矩阵-向量乘法:
M::MyMatrix * b::AbstractVector = my_mul(M, b)
my_mul(M::MyMatrix, b::AbstractVector) = M.A * b .+ M.B * b
这种实现方式将矩阵乘法分解为两个标准矩阵乘法的和,这在某些场景下可以提高计算效率或实现特殊功能。
自动微分支持
要使自定义矩阵支持自动微分,我们需要处理ChainRules的规则。由于继承自AbstractMatrix会触发一些默认规则,我们需要显式地处理这些情况:
using ChainRulesCore
# 禁用默认的矩阵乘法规则
ChainRulesCore.@opt_out ChainRulesCore.rrule(
::typeof(Base.:*), ::MyMatrix,
::ChainRulesCore.AbstractVecOrMat{<:Union{Real, Complex}}
)
# 自定义矩阵乘法的反向传播规则
function ChainRulesCore.rrule(::typeof(my_mul), M::MyMatrix, b::AbstractVector)
result = M.A * b .+ M.B * b
result, Δ -> (
NoTangent(),
Tangent{typeof(M)}(A = zero(M.A), B = zero(M.B)),
NoTangent(),
)
end
与Flux.jl集成
为了使自定义矩阵能够被Flux的训练系统识别和处理,我们需要使用Functors.jl的功能来指定哪些字段是可训练的:
Flux.Functors.@functor MyMatrix (A, B)
这一步至关重要,它告诉Flux将矩阵内部的A和B字段视为可训练参数,而不是将整个MyMatrix对象视为一个不可分割的参数。
优化器支持
最后,我们需要确保自定义矩阵可以与Flux的优化器协同工作。这通常不需要额外代码,因为Functors.jl已经正确地将矩阵分解为可训练的子组件。
完整示例
将上述所有部分组合起来,我们得到一个完整的、可与Flux.jl协同工作的自定义矩阵类型:
using Flux, ChainRulesCore
import Base: *
struct MyMatrix{T <: Number, U <: AbstractMatrix{T}} <: AbstractMatrix{T}
A::U
B::U
end
# 基本矩阵接口实现
Base.show(io::IO, ::MyMatrix) = print(io, "MyMatrix")
Base.show(io::IO, ::MIME"text/plain", ::MyMatrix) = print(io, "MyMatrix")
Base.size(M::MyMatrix) = size(M.A)
Base.getindex(M::MyMatrix, i, j) = M.A[i, j] + M.B[i, j]
# Flux集成
Flux.Functors.@functor MyMatrix (A, B)
# 矩阵乘法实现
M::MyMatrix * b::AbstractVector = my_mul(M, b)
my_mul(M::MyMatrix, b::AbstractVector) = M.A * b .+ M.B * b
# 自动微分规则
ChainRulesCore.@opt_out ChainRulesCore.rrule(
::typeof(Base.:*), ::MyMatrix,
::ChainRulesCore.AbstractVecOrMat{<:Union{Real, Complex}}
)
function ChainRulesCore.rrule(::typeof(my_mul), M::MyMatrix, b::AbstractVector)
result = M.A * b .+ M.B * b
result, Δ -> (
NoTangent(),
Tangent{typeof(M)}(A = zero(M.A), B = zero(M.B)),
NoTangent(),
)
end
实际应用
创建并训练一个使用自定义矩阵的简单模型:
# 创建自定义矩阵和输入数据
M = MyMatrix(rand(3, 3), rand(3, 3))
x = rand(3)
# 检查梯度计算
grads = Flux.gradient(m -> sum(m * x), M)
# 设置优化器并训练
opt = Flux.setup(Adam(), M)
Flux.train!((m, x) -> sum(m * x), M, [(x)], opt)
总结
在Flux.jl中创建自定义矩阵类型并使其与整个训练流程协同工作需要以下几个关键步骤:
- 正确定义矩阵类型并实现必要的接口方法
- 使用Functors.jl标记可训练字段
- 为自定义操作实现适当的自动微分规则
- 确保矩阵类型能够与优化器协同工作
这种方法不仅适用于简单的矩阵类型,也可以扩展到更复杂的自定义层和操作,为Flux.jl提供了极大的灵活性和扩展能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135