Flux.jl中自定义AbstractMatrix子类型的优化实践
2025-06-12 19:46:55作者:董斯意
摘要
在Flux.jl深度学习框架中,自定义矩阵类型并使其与自动微分(AD)和优化器协同工作是一个常见需求。本文将详细介绍如何创建继承自AbstractMatrix的自定义矩阵类型,并使其完全兼容Flux.jl的自动微分和优化系统。
自定义矩阵类型基础
首先我们定义一个简单的矩阵类型,它由两个标准矩阵相加组成:
struct MyMatrix{T <: Number, U <: AbstractMatrix{T}} <: AbstractMatrix{T}
A::U
B::U
end
这个类型继承自AbstractMatrix,意味着它可以被当作普通矩阵使用。我们需要为其实现基本的矩阵接口:
Base.size(M::MyMatrix) = size(M.A)
Base.getindex(M::MyMatrix, i, j) = M.A[i, j] + M.B[i, j]
矩阵-向量乘法实现
为了使自定义矩阵能够参与神经网络计算,我们需要实现矩阵-向量乘法:
M::MyMatrix * b::AbstractVector = my_mul(M, b)
my_mul(M::MyMatrix, b::AbstractVector) = M.A * b .+ M.B * b
这种实现方式将矩阵乘法分解为两个标准矩阵乘法的和,这在某些场景下可以提高计算效率或实现特殊功能。
自动微分支持
要使自定义矩阵支持自动微分,我们需要处理ChainRules的规则。由于继承自AbstractMatrix会触发一些默认规则,我们需要显式地处理这些情况:
using ChainRulesCore
# 禁用默认的矩阵乘法规则
ChainRulesCore.@opt_out ChainRulesCore.rrule(
::typeof(Base.:*), ::MyMatrix,
::ChainRulesCore.AbstractVecOrMat{<:Union{Real, Complex}}
)
# 自定义矩阵乘法的反向传播规则
function ChainRulesCore.rrule(::typeof(my_mul), M::MyMatrix, b::AbstractVector)
result = M.A * b .+ M.B * b
result, Δ -> (
NoTangent(),
Tangent{typeof(M)}(A = zero(M.A), B = zero(M.B)),
NoTangent(),
)
end
与Flux.jl集成
为了使自定义矩阵能够被Flux的训练系统识别和处理,我们需要使用Functors.jl的功能来指定哪些字段是可训练的:
Flux.Functors.@functor MyMatrix (A, B)
这一步至关重要,它告诉Flux将矩阵内部的A和B字段视为可训练参数,而不是将整个MyMatrix对象视为一个不可分割的参数。
优化器支持
最后,我们需要确保自定义矩阵可以与Flux的优化器协同工作。这通常不需要额外代码,因为Functors.jl已经正确地将矩阵分解为可训练的子组件。
完整示例
将上述所有部分组合起来,我们得到一个完整的、可与Flux.jl协同工作的自定义矩阵类型:
using Flux, ChainRulesCore
import Base: *
struct MyMatrix{T <: Number, U <: AbstractMatrix{T}} <: AbstractMatrix{T}
A::U
B::U
end
# 基本矩阵接口实现
Base.show(io::IO, ::MyMatrix) = print(io, "MyMatrix")
Base.show(io::IO, ::MIME"text/plain", ::MyMatrix) = print(io, "MyMatrix")
Base.size(M::MyMatrix) = size(M.A)
Base.getindex(M::MyMatrix, i, j) = M.A[i, j] + M.B[i, j]
# Flux集成
Flux.Functors.@functor MyMatrix (A, B)
# 矩阵乘法实现
M::MyMatrix * b::AbstractVector = my_mul(M, b)
my_mul(M::MyMatrix, b::AbstractVector) = M.A * b .+ M.B * b
# 自动微分规则
ChainRulesCore.@opt_out ChainRulesCore.rrule(
::typeof(Base.:*), ::MyMatrix,
::ChainRulesCore.AbstractVecOrMat{<:Union{Real, Complex}}
)
function ChainRulesCore.rrule(::typeof(my_mul), M::MyMatrix, b::AbstractVector)
result = M.A * b .+ M.B * b
result, Δ -> (
NoTangent(),
Tangent{typeof(M)}(A = zero(M.A), B = zero(M.B)),
NoTangent(),
)
end
实际应用
创建并训练一个使用自定义矩阵的简单模型:
# 创建自定义矩阵和输入数据
M = MyMatrix(rand(3, 3), rand(3, 3))
x = rand(3)
# 检查梯度计算
grads = Flux.gradient(m -> sum(m * x), M)
# 设置优化器并训练
opt = Flux.setup(Adam(), M)
Flux.train!((m, x) -> sum(m * x), M, [(x)], opt)
总结
在Flux.jl中创建自定义矩阵类型并使其与整个训练流程协同工作需要以下几个关键步骤:
- 正确定义矩阵类型并实现必要的接口方法
- 使用Functors.jl标记可训练字段
- 为自定义操作实现适当的自动微分规则
- 确保矩阵类型能够与优化器协同工作
这种方法不仅适用于简单的矩阵类型,也可以扩展到更复杂的自定义层和操作,为Flux.jl提供了极大的灵活性和扩展能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
703
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
683
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
150
51
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
928
82