开源项目下载及安装教程:基于机器学习的操作系统优化框架KML
2024-12-06 18:33:31作者:江焘钦
1. 项目介绍
KML(Kernel ML)是一个为操作系统和存储系统设计的机器学习框架。该项目旨在利用机器学习技术优化存储系统性能,通过自适应和智能化的系统来处理动态和复杂的工作负载。KML能够在操作系统中嵌入机器学习模型,从而提高存储系统的工作效率。项目已经在著名的调整预读值问题上展示了其性能提升潜力。
2. 项目下载位置
项目托管在GitHub上,您可以访问以下地址下载源代码:
项目地址:https://github.com/sbu-fsl/kernel-ml.git
3. 项目安装环境配置(含图片示例)
在安装KML之前,您需要确保您的系统环境满足以下要求:
- Linux操作系统
- 至少25GiB的磁盘空间
- 安装以下依赖包:git, fakeroot, build-essential, ncurses-dev, xz-utils, libssl-dev, bc, flex, libelf-dev, bison
以下是环境配置的步骤和示例图片:
# 克隆依赖库
mkdir dependencies
cd dependencies
git clone https://github.com/google/benchmark.git
git clone https://github.com/google/googletest.git
# 编译安装benchmark
cd benchmark
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
sudo make install
# 编译安装googletest
cd /path/to/googletest
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
sudo make install
4. 项目安装方式
以下是安装KML的步骤:
# 克隆KML项目
git clone --recurse-submodules https://github.com/sbu-fsl/kernel-ml.git
# 进入项目目录
cd kernel-ml/kernel-ml-linux
# 安装必要的Linux内核头文件和编译工具
sudo apt-get install git fakeroot build-essential ncurses-dev xz-utils libssl-dev bc flex libelf-dev bison
# 复制当前内核配置文件
cp /boot/config-$(uname -r) config
# 编译安装Linux内核
make menuconfig
make -j$(nproc)
sudo make modules_install -j$(nproc)
sudo make install -j$(nproc)
# 重启系统
sudo reboot
# 确认安装的内核版本
uname -a
5. 项目处理脚本
在完成内核安装后,您需要指定内核头文件的路径,然后编译KML:
# 修改CMake文件指定内核头文件路径
# 例如,如果您的内核头文件在 /home/user/kernel-ml/kernel-ml-linux
# 则在 kernel-ml/cmake/FindKernelHeaders.cmake 中添加以下行:
# find_path(KERNELHEADERS_DIR include/linux/user.h PATHS /home/user/kernel-ml/kernel-ml-linux)
# 创建编译目录
mkdir build
cd build
# 配置并编译KML
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-Werror" ..
make
# 运行测试
cd build
ctest --verbose
以上步骤即为KML项目的下载、环境配置、安装以及基本测试方法。希望对您有所帮助!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
282
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
272
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871