开源项目下载及安装教程:基于机器学习的操作系统优化框架KML
2024-12-06 17:53:29作者:江焘钦
1. 项目介绍
KML(Kernel ML)是一个为操作系统和存储系统设计的机器学习框架。该项目旨在利用机器学习技术优化存储系统性能,通过自适应和智能化的系统来处理动态和复杂的工作负载。KML能够在操作系统中嵌入机器学习模型,从而提高存储系统的工作效率。项目已经在著名的调整预读值问题上展示了其性能提升潜力。
2. 项目下载位置
项目托管在GitHub上,您可以访问以下地址下载源代码:
项目地址:https://github.com/sbu-fsl/kernel-ml.git
3. 项目安装环境配置(含图片示例)
在安装KML之前,您需要确保您的系统环境满足以下要求:
- Linux操作系统
- 至少25GiB的磁盘空间
- 安装以下依赖包:git, fakeroot, build-essential, ncurses-dev, xz-utils, libssl-dev, bc, flex, libelf-dev, bison
以下是环境配置的步骤和示例图片:
# 克隆依赖库
mkdir dependencies
cd dependencies
git clone https://github.com/google/benchmark.git
git clone https://github.com/google/googletest.git
# 编译安装benchmark
cd benchmark
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
sudo make install
# 编译安装googletest
cd /path/to/googletest
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
sudo make install
4. 项目安装方式
以下是安装KML的步骤:
# 克隆KML项目
git clone --recurse-submodules https://github.com/sbu-fsl/kernel-ml.git
# 进入项目目录
cd kernel-ml/kernel-ml-linux
# 安装必要的Linux内核头文件和编译工具
sudo apt-get install git fakeroot build-essential ncurses-dev xz-utils libssl-dev bc flex libelf-dev bison
# 复制当前内核配置文件
cp /boot/config-$(uname -r) config
# 编译安装Linux内核
make menuconfig
make -j$(nproc)
sudo make modules_install -j$(nproc)
sudo make install -j$(nproc)
# 重启系统
sudo reboot
# 确认安装的内核版本
uname -a
5. 项目处理脚本
在完成内核安装后,您需要指定内核头文件的路径,然后编译KML:
# 修改CMake文件指定内核头文件路径
# 例如,如果您的内核头文件在 /home/user/kernel-ml/kernel-ml-linux
# 则在 kernel-ml/cmake/FindKernelHeaders.cmake 中添加以下行:
# find_path(KERNELHEADERS_DIR include/linux/user.h PATHS /home/user/kernel-ml/kernel-ml-linux)
# 创建编译目录
mkdir build
cd build
# 配置并编译KML
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-Werror" ..
make
# 运行测试
cd build
ctest --verbose
以上步骤即为KML项目的下载、环境配置、安装以及基本测试方法。希望对您有所帮助!
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28