InternLM-XComposer项目在MMBench-CN评估中的技术要点解析
模型评估中的关键问题
InternLM-XComposer项目在MMBench-CN基准测试评估过程中遇到了一些技术问题,这些问题揭示了多模态大模型评估中的几个重要技术细节。
代码实现问题
在最初的评估代码实现中,预测函数使用了generate_answer方法,但实际上项目代码库中只提供了model_gen函数。这种不一致性会导致评估脚本无法正常运行。这个问题已经由项目团队确认并修复,体现了在开源项目开发过程中保持接口一致性的重要性。
评估性能分析
评估过程中发现的第二个关键点是模型推理速度问题。与LLaVA模型相比,XComposer2-VL-7B在相同环境下完成4329条数据评估需要更长时间。经过分析,这主要由以下几个因素造成:
-
图像分辨率差异:XComposer2-VL-7B使用了更高的图像分辨率,导致图像token数量是LLaVA的两倍,显著增加了计算负担。
-
束搜索参数设置:XComposer2-VL-7B默认使用num_beams=5的束搜索策略,而LLaVA使用num_beams=1。束搜索宽度对推理速度有显著影响,因为更大的beam width意味着需要并行计算更多的候选序列。
-
模型架构特性:虽然两者都是基于Transformer架构的多模态模型,但在具体实现细节上可能存在差异,如注意力机制实现、图像编码器选择等,这些都会影响最终推理速度。
评估结果的可比性
值得注意的是,项目团队在论文中报告的结果是基于num_beams=5的设置获得的。这意味着:
-
为了与论文结果进行公平比较,评估时应保持相同的参数设置。
-
如果为了追求速度而修改参数(如将num_beams改为1),虽然可以显著提高评估速度,但得到的结果可能无法直接与论文报告的性能进行比较。
-
项目团队表示后续会更新num_beams=1的评估结果,这将为用户提供更多参考信息。
实践建议
对于想要复现或评估InternLM-XComposer模型的开发者,建议:
-
使用最新版本的评估代码,确保接口一致性。
-
根据实际需求平衡评估速度和结果准确性。如果仅需要快速验证,可以考虑适当降低束搜索宽度。
-
注意比较基准的一致性,特别是在与其它模型(如LLaVA)进行对比时,需要考虑分辨率、评估参数等多方面的差异。
这些技术细节的理解对于正确评估多模态大模型的性能至关重要,也能帮助开发者更好地理解模型特性并做出合理的技术选型。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00