TT-Metal v0.58.0-rc20 版本技术解析与功能增强
TT-Metal 是一个高性能计算框架,专注于为AI和机器学习工作负载提供高效的硬件加速支持。最新发布的v0.58.0-rc20版本带来了多项重要改进和功能增强,特别是在多设备支持、算子优化和性能提升方面。
核心功能增强
本次版本在多设备支持方面做出了显著改进。框架现在能够正确处理多个N150设备的初始化问题,解决了设备ID跟踪在测试运行间的清理问题。对于WH/BH架构,实现了原地Halo多播功能,这为分布式计算场景提供了更高效的数据传输机制。
在算子支持方面,框架扩展了对多种数据类型的支持。新增了int类型对零比较操作的支持,为uint16类型添加了加法操作支持,并实现了int类型对关系运算的支持。这些扩展使得框架能够处理更广泛的计算场景。
性能优化与调试工具
性能优化是本版本的重点之一。开发团队更新了性能容限设置,针对特定硬件配置调整了性能预期。特别值得注意的是,框架现在能够生成每个核心的操作到操作时间CSV文件,为性能分析提供了更细粒度的数据。
调试工具也得到了增强。新增了捕获DRAM写入的观察器功能,可以帮助开发者识别潜在的性能瓶颈。同时,框架现在支持强制将性能分析结果推送到Tracy工具,便于进行更深入的性能分析。
模型支持与稳定性
在模型支持方面,本次版本为YOLOv8x添加了跟踪支持,并实现了VAE中间块和上采样块的功能。针对ResNet50模型,专门开发了稳定性测试脚本,确保模型在框架上的可靠运行。
对于大型语言模型的支持也有显著提升。框架优化了Llama SDPA解码过程,通过使用16x32分块和移除copy_blocks操作来提高性能。同时增加了对Mistral-7B模型的支持,虽然这一功能在后续版本中被暂时回退以进行进一步优化。
分布式计算改进
分布式计算能力是本版本的另一个亮点。框架增加了对6U系统2D环面拓扑的初始化支持,并改进了reduce scatter操作中围绕集群轴计算接收器/发送器ID的代码。这些改进使得框架在分布式环境中的表现更加稳定和高效。
针对all_gather_concat操作,框架现在支持RM输入,并为其输出添加了隐式tilize功能。同时修复了AllGatherAsyncMinimal中的段错误问题,提高了分布式操作的可靠性。
测试与验证
为了确保框架质量,开发团队进行了大量测试工作。新增了6U特定的全网格带宽测试,并创建了system_health测试二进制文件用于6U/T3K平台验证。针对黑盒测试,调整了超时设置以适应不同硬件配置。
测试覆盖率方面,框架现在包含了更多算子测试,如更新了SDXL conv2d测试和ttnn.group_norm测试。同时修复了导致错误输出的argmax演示问题,确保示例代码的可靠性。
本次TT-Metal v0.58.0-rc20版本的发布,展现了框架在性能、功能和稳定性方面的持续进步,为AI和高性能计算应用提供了更加强大的支持基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00