LMSTFY 开源任务队列服务教程
2024-09-18 03:01:00作者:姚月梅Lane
1. 项目介绍
LMSTFY(Let Me Schedule Task For You)是一个基于 Redis 存储的简单任务队列(Task Queue)服务,由 Go 语言开发。LMSTFY 提供了基本的任务队列原语(如 PUBLISH、CONSUME 和 DELETE),并通过 HTTP API 支持任务的生命周期管理,如任务的 TTL(time-to-live)、延迟触发、自动重试和死信处理。LMSTFY 本身不存储数据,而是依赖 Redis 或 Redis Sentinel 来存储数据,因此数据的完整性和持久性由 Redis 负责。
主要特性
- 通过 HTTP REST API 提供服务
- 支持任务的额外生命周期管理:
- 任务 TTL(time-to-live)
- 任务延迟触发(以秒为单位)
- 任务自动重试
- 死信处理
- 提供丰富的业务和性能指标
- 具备横向扩展能力
- 支持消费/生成速率限制
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了 Docker 和 Docker Compose。
2.2 启动 LMSTFY 服务
-
克隆 LMSTFY 项目:
git clone https://github.com/bitleak/lmstfy.git cd lmstfy -
使用 Docker Compose 启动 LMSTFY 和 Redis 服务:
cd docker docker-compose -p test-lmstfy up -d这将会在本地启动 LMSTFY 服务,监听端口 7777,管理端口 7778。
2.3 创建命名空间和 Token
使用以下命令创建一个新的命名空间和 Token:
curl -XPOST -d "description=test namesapce" "http://127.0.0.1:7778/token/test-ns"
返回的 Token 将用于后续的 API 调用。
2.4 发布任务
使用以下命令发布一个新任务:
curl -XPUT -H "X-token:[ENTER YOUR TOKEN]" "http://127.0.0.1:7777/api/test-ns/test-queue?delay=1&ttl=3600&tries=16"
2.5 消费任务
使用以下命令从队列中消费一个任务:
curl -H "X-token:[ENTER YOUR TOKEN]" "http://127.0.0.1:7777/api/test-ns/test-queue?ttr=30&timeout=2"
2.6 确认任务完成
使用以下命令确认任务完成:
curl -i -XDELETE -H "X-token:[ENTER YOUR TOKEN]" "http://127.0.0.1:7777/api/test-ns/test-queue/job/[YOUR JOB ID]"
3. 应用案例和最佳实践
3.1 应用案例
LMSTFY 适用于需要异步处理任务的各种应用场景,例如:
- 消息队列:用于处理大量并发消息,确保消息的顺序处理和可靠性。
- 定时任务:支持任务的延迟触发,适用于需要定时执行的任务。
- 重试机制:支持任务的自动重试,确保任务在失败后能够重新执行。
3.2 最佳实践
- 命名空间管理:使用不同的命名空间来隔离不同的业务逻辑,避免任务之间的冲突。
- Token 管理:合理管理 Token,确保只有授权的应用可以访问任务队列。
- 监控和日志:利用 LMSTFY 提供的监控和日志功能,及时发现和解决问题。
4. 典型生态项目
LMSTFY 可以与以下生态项目结合使用,提升系统的整体性能和可靠性:
- Prometheus:用于监控 LMSTFY 的性能指标,及时发现系统瓶颈。
- Grafana:用于可视化 Prometheus 收集的监控数据,提供直观的系统状态展示。
- Redis Sentinel:用于提供 Redis 的高可用性,确保 LMSTFY 的数据存储可靠性。
通过结合这些生态项目,可以构建一个高性能、高可用的任务队列系统。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328