OSHI项目在FlyCI与GitHub Actions缓存机制差异分析
2025-06-10 18:07:28作者:薛曦旖Francesca
背景介绍
OSHI作为一个跨平台、跨架构的系统信息监控库,需要在多种操作系统和硬件架构上进行全面测试。近期项目在集成FlyCI的M1架构Runner时,发现了一个与Maven依赖缓存相关的性能问题。本文将深入分析该问题的技术本质及解决方案。
问题现象
在持续集成过程中,FlyCI Runner表现出以下异常特征:
- 测试执行前阶段比GitHub原生Runner多耗时约1分钟
- Maven依赖需要重复从中央仓库下载
- 尽管缓存恢复步骤显示成功,但实际构建时无法命中本地仓库
通过对比日志发现,GitHub Runner能正确复用缓存依赖:
[INFO] Using cached依赖:-javaagent:/Users/runner/.m2/repository/org/jacoco/org.jacoco.agent/0.8.11/org.jacoco.agent-0.8.11-runtime.jar
而FlyCI Runner则显示完整下载过程:
[INFO] Downloading from central: https://repo.maven.apache.org/maven2/org/jacoco/org.jacoco.agent/0.8.11/org.jacoco.agent-0.8.11.pom
...
[INFO] Downloaded from central: https://repo.maven.apache.org/maven2/org/jacoco/org.jacoco.agent/0.8.11/org.jacoco.agent-0.8.11-runtime.jar
技术分析
缓存机制原理
GitHub Actions的缓存系统基于以下关键设计:
- 采用相对路径存储(
../../../.m2/repository/) - 默认假设缓存文件位于用户主目录(
~/.m2) - 使用tar压缩包格式进行归档
根因定位
FlyCI Runner与GitHub Runner存在目录结构差异:
- GitHub Runner路径:
/Users/runner/work/_temp/ - FlyCI Runner路径:
/opt/actions-runner/_work/_temp/
当缓存恢复时,相对路径../../../.m2在不同基础路径下会解析到不同位置:
- GitHub Runner正确还原到:
/Users/runner/.m2 - FlyCI Runner错误还原到:
/opt/actions-runner/.m2
而Maven默认查找的是用户主目录下的.m2仓库,导致缓存失效。
解决方案验证
通过启用Maven调试模式(-X参数)确认:
- FlyCI Runner确实将缓存恢复到非标准路径
- Maven仍按标准路径查找依赖
- 手动指定缓存路径可临时解决问题
最佳实践建议
对于需要在多平台Runner间共享缓存的项目:
-
路径标准化
- 确保所有Runner使用相同的用户主目录结构
- 或显式配置Maven本地仓库路径
-
缓存策略优化
- 对不同Runner类型使用差异化缓存key
- 考虑使用setup-java等专业action管理缓存
-
监控机制
- 添加缓存命中率检查步骤
- 记录依赖下载耗时指标
后续进展
FlyCI团队在收到反馈后24小时内发布了新版本镜像,主要改进包括:
- 标准化Runner安装路径到用户主目录
- 确保与GitHub原生Runner的路径兼容性
- 验证显示构建时间从原来的1分钟+降至40秒
经验总结
- 跨平台CI/CD需特别注意文件系统路径差异
- 缓存机制对构建性能影响显著(本例提升达50%)
- 开源协作能快速推动技术问题解决
该案例展示了基础设施兼容性问题对构建效率的重要影响,也为其他需要多平台支持的开源项目提供了宝贵参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0118
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869