Archinstall项目分区表备份头重叠问题分析与修复
2025-06-01 18:53:06作者:郦嵘贵Just
问题背景
在Archinstall项目(Arch Linux自动化安装工具)的最新版本中,用户报告了一个严重的安装失败问题。当尝试在物理磁盘(特别是Samsung T7 SSD)上安装系统时,安装程序会在分区格式化阶段崩溃,并抛出"Unable to determine new partition number: /dev/sdb2"错误。这一问题在虚拟机环境中不会出现,仅影响物理磁盘安装场景。
问题现象
安装日志显示,在创建和格式化分区后,系统无法正确识别新创建的分区信息。具体表现为:
- 安装程序成功创建了GPT分区表
- 创建了两个分区:/dev/sdb1(FAT32)和/dev/sdb2(ext4)
- 格式化操作看似成功完成
- 但随后系统无法获取/dev/sdb2的分区号(partn)、分区UUID(partuuid)和分区类型(parttype)等关键信息
根本原因分析
经过开发者深入调查,发现问题根源在于分区布局与GPT备份头的冲突。GPT分区表规范要求:
- 主GPT头位于磁盘起始位置
- 备份GPT头必须位于磁盘末尾的33个扇区(16.5KB)内
- 同时,Archinstall默认使用1MiB对齐方式创建分区
在9163e8c这次提交中,开发者修改了分区结束位置的计算方式,错误地将结束位置设置为"磁盘总大小减去33个扇区"。这种计算方式可能导致:
- 最后一个分区可能延伸到磁盘末尾的1MiB区域
- 与备份GPT头所需空间产生重叠
- 导致分区信息无法被正确识别
解决方案
开发者提出了一个简单而有效的修复方案:将分区结束位置的计算从"减去33个扇区"改为"减去1MiB"。这一修改:
- 保留了1MiB对齐的良好实践
- 确保为备份GPT头预留足够空间
- 避免了分区与备份区域的任何潜在重叠
修改前后的关键代码对比:
# 修改前
def gpt_end(self) -> Size:
return self - Size(33, Unit.sectors, self.sector_size)
# 修改后
def gpt_end(self) -> Size:
return self - Size(1, Unit.MiB, self.sector_size)
验证结果
用户验证表明该修复方案完全解决了问题:
- 安装过程顺利完成
- 分区工具(sfdisk/sgdisk/parted)均报告无错误
- 所有分区信息都能被正确识别
- 磁盘末尾保留了足够的空闲空间(约2.7MiB)
技术启示
这一案例为我们提供了几个重要的技术启示:
- GPT分区表规范理解:必须充分理解GPT分区表中主头和备份头的位置要求
- 分区对齐考量:现代分区工具通常使用1MiB对齐,这需要与GPT规范协调
- 物理与虚拟环境差异:虚拟磁盘通常比物理磁盘更"宽容",物理设备更能暴露潜在问题
- 回归测试重要性:看似无害的改动可能引入严重问题,需要全面的测试覆盖
最佳实践建议
基于这一问题的经验,建议开发者和用户在涉及磁盘分区时:
- 始终为GPT备份头保留足够空间
- 使用现代对齐方式(如1MiB)的同时考虑规范要求
- 在物理设备上验证关键存储操作
- 使用多种工具(sfdisk/sgdisk/parted)交叉验证分区表完整性
这一问题的及时修复展现了开源社区响应迅速、协作解决问题的优势,也为存储相关的开发工作提供了有价值的参考案例。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
635
144
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
652
276
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
245
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
73
98
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.72 K