Django REST Framework SimpleJWT 集成 AWS Cognito 配置指南
在 Django 项目中集成 AWS Cognito 身份验证服务时,使用 django-rest-framework-simplejwt 库是一个常见的选择。本文将详细介绍如何正确配置 SimpleJWT 以支持 AWS Cognito 的 JWT 验证流程。
核心配置参数
要使 SimpleJWT 与 AWS Cognito 协同工作,需要在 Django 的 settings.py 文件中进行以下关键配置:
SIMPLE_JWT = {
'ALGORITHM': 'RS256',
'USER_ID_CLAIM': 'username',
'USER_ID_FIELD': 'username', # 对应 Django 用户模型中的字段
'TOKEN_TYPE_CLAIM': 'token_use',
'ISSUER': 'https://cognito-idp.<aws-region>.amazonaws.com/<user-pool-id>',
'JWK_URL': 'https://cognito-idp.<aws-region>.amazonaws.com/<user-pool-id>/.well-known/jwks.json',
}
配置要点解析
-
算法选择:必须设置为 'RS256',这是 AWS Cognito 使用的标准 RSA 签名算法。
-
用户标识映射:
USER_ID_CLAIM:指定 JWT payload 中哪个字段包含用户唯一标识USER_ID_FIELD:对应 Django 用户模型中存储该标识的字段
-
Token 类型声明:
TOKEN_TYPE_CLAIM设置为 'token_use',这是 Cognito 特有的声明字段。 -
签发者验证:
ISSUER必须与 Cognito 用户池的颁发者 URL 完全匹配。 -
公钥获取:
JWK_URL指向 Cognito 提供的 JWK 集端点,用于验证 JWT 签名。
重要注意事项
-
避免设置 AUDIENCE:AWS Cognito 的访问令牌默认不包含 audience 声明,设置 AUDIENCE 会导致验证失败。
-
用户模型匹配:确保 Django 用户模型中有一个字段能够存储 Cognito 返回的用户标识(通常是 'username' 或 'sub')。
-
区域和用户池ID:配置中的
<aws-region>和<user-pool-id>需要替换为实际的 AWS 区域和用户池 ID。
视图层集成
在视图层集成非常简单,只需在视图类中添加 JWTAuthentication 即可:
from rest_framework_simplejwt.authentication import JWTAuthentication
class MySecureViewSet(viewsets.GenericViewSet):
authentication_classes = [JWTAuthentication]
# 其他视图配置...
通过以上配置,Django 应用就能够正确验证来自 AWS Cognito 的 JWT 令牌,实现安全的身份验证流程。这种集成方式既保持了 Django 原有的用户模型体系,又能够利用 AWS Cognito 强大的身份管理功能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00