在pyKAN中提取符号化激活函数的解析表达式
理解pyKAN中的符号化激活函数
pyKAN(Python Kolmogorov-Arnold Network)是一个实现Kolmogorov-Arnold网络的Python库,它采用了一种创新的神经网络架构。与传统神经网络使用固定激活函数不同,pyKAN允许使用可学习的符号化激活函数,这为模型提供了更强的表达能力。
符号化激活函数的结构
在pyKAN模型中,激活函数不是简单的ReLU或Sigmoid等固定形式,而是由基础函数的线性组合构成的符号化表达式。这些基础函数可能包括多项式项、三角函数、指数函数等,具体取决于模型的配置。
获取符号化表达式的方法
pyKAN提供了直接访问这些符号化激活函数解析表达式的方法。通过模型的symbolic_fun属性,我们可以获取网络中每一层的激活函数表示:
# 获取第l层第j个神经元第i个输入的激活函数符号表达式
activation_expr = model.symbolic_fun[l].funs_name[j][i]
其中:
l表示网络层索引(从0开始)j表示该层的神经元索引i表示该神经元的输入索引
实际应用示例
假设我们有一个简单的pyKAN模型,想要检查第一层第一个神经元的第一个输入的激活函数:
# 假设model是一个已经训练好的pyKAN模型
first_layer = 0
first_neuron = 0
first_input = 0
expr = model.symbolic_fun[first_layer].funs_name[first_neuron][first_input]
print(f"激活函数表达式: {expr}")
可能的输出可能是类似于"0.5*x + 0.3*sin(x)"这样的符号表达式,表示该激活函数是线性项和正弦函数的组合。
技术深入
-
符号表达式的构建:pyKAN在训练过程中会不断调整这些符号表达式的结构和系数,通过进化算法或其他优化方法寻找最优的函数组合。
-
表达式的可解释性:与传统神经网络的"黑箱"特性相比,这种符号化的表示大大提高了模型的可解释性。研究人员可以直接阅读这些表达式来理解网络的行为。
-
表达式的复杂度控制:在实际应用中,可以通过正则化或其他方法控制这些符号表达式的复杂度,防止出现过拟合或过于复杂的表达式。
使用建议
-
模型分析:训练完成后,建议检查各层的符号表达式,了解网络学习到的特征转换方式。
-
调试工具:当模型表现不佳时,可以通过检查这些表达式来诊断问题,例如是否出现了无意义的复杂组合。
-
知识提取:对于科学应用,这些符号表达式可能直接对应着物理定律或经验公式,可以从中提取有价值的科学发现。
pyKAN的这种符号化表示方法为神经网络的可解释性研究开辟了新途径,特别适合那些需要理解模型内部工作机制的应用场景。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00