InternLM/lagent v0.5.0rc3版本发布:多模型支持与搜索功能增强
InternLM/lagent是一个开源的AI代理框架,旨在为开发者提供灵活、高效的AI应用开发工具。该项目通过模块化设计,支持多种大语言模型和工具链的集成,使开发者能够快速构建基于AI的智能应用。最新发布的v0.5.0rc3版本带来了多项重要改进和新特性。
多模型支持扩展
本次版本显著增强了框架对大语言模型的支持范围。新增了对Claude模型的完整支持,这意味着开发者现在可以在项目中直接调用Claude系列模型进行推理和对话。同时,对Qwen模型的适配问题进行了修复,确保了该模型在框架中的稳定运行。
在模型调用方面,团队优化了第三方API接口的流式输出处理,解决了同步模式下可能出现的问题。这一改进使得在使用相关模型时,数据流传输更加稳定可靠,提升了用户体验。
搜索功能增强
搜索功能是本版本的另一大亮点。开发团队对AsyncDDGS搜索API进行了修复,确保其稳定性和准确性。更值得注意的是,新增了对开源搜索引擎的支持,为开发者提供了更多元化的搜索选择。
这些改进使得基于lagent开发的AI应用能够获取更准确、更全面的网络信息,为知识增强型应用提供了更好的基础设施。
工具链与参数控制优化
在工具链方面,v0.5.0rc3引入了自定义参数作用域的功能。开发者现在可以在工具描述中定义特定的参数作用域,这为复杂工具的开发和集成提供了更大的灵活性。
对于使用LMDeploy的用户,新版本在AsyncLMDeployPipeline中增加了do_sample参数的支持。这一参数控制着模型生成文本时的采样策略,开发者可以根据应用场景选择不同的采样方式,从而获得更符合预期的输出结果。
稳定性与兼容性提升
除了功能增强外,本次更新还包含多项稳定性改进。添加了tenacity库作为运行时依赖,增强了框架的容错能力。同时修复了相关接口的问题,确保了与模型交互的稳定性。
这些改进共同构成了v0.5.0rc3版本的核心价值,为开发者提供了更强大、更稳定的AI应用开发平台。随着多模型支持和搜索功能的不断完善,InternLM/lagent正逐步成为构建下一代AI应用的理想选择。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01