YTsaurus项目中SPYT引擎的冗余排序问题分析与优化
背景介绍
在YTsaurus项目的SPYT(Spark on YTsaurus)引擎使用过程中,开发人员发现了一个关于查询优化的问题。当在DataFrame的join操作后添加where条件时,查询执行计划会不必要地引入排序操作,导致性能下降。这个问题与之前报告过的类似问题有所不同,值得深入分析。
问题现象
开发人员在使用SPYT引擎时,构建了一个包含join和where条件的查询。基础表已经按照[market, deal_id, unix_timestamp]进行了排序,理论上join操作可以直接利用现有的排序属性。然而,当添加特定的where条件后,查询计划却意外地增加了排序阶段。
具体来说,当执行以下类型的查询时:
deals.join(books, on=[*STORAGE_INFO_KEY])
.where(F.floor((deals.unix_timestamp + 1) / 10) == F.floor(books.unix_timestamp / 10))
即使输入表已经按照join键排序,SPYT仍然会在join前插入排序操作,这显然是冗余的,会影响查询性能。
技术分析
问题根源
经过深入分析,发现问题出在Spark查询优化器的处理逻辑上。当join操作后跟有filter条件时,Spark优化器可能会将filter条件"下推"到join条件中。这种优化在某些情况下是有益的,但在YTsaurus的上下文中却导致了不必要的排序。
具体来说,优化器会将原始join条件[market, deal_id]扩展为包含filter表达式的新join条件,如[market, deal_id, unix_timestamp/10]。由于表数据没有按照这个新的复合键排序,优化器就决定插入排序操作。
解决方案
YTsaurus团队已经修复了这个问题,修复方案将在下一个版本中发布。修复的核心思路是:
- 保持原始的join条件不变,避免引入新的排序键
- 将复杂的filter条件保留在join后的阶段处理
- 在某些情况下,可以重写filter条件表达式,使其不会被优化器错误地"下推"
例如,可以将原来的filter条件:
F.floor((deals.unix_timestamp + 1) / 10) == F.floor(books.unix_timestamp / 10)
改写为等效但不会被优化器错误处理的表达式:
F.floor((deals.unix_timestamp + 1) / 10) - F.floor(books.unix_timestamp / 10) == 0
这种改写可以防止优化器将条件错误地合并到join条件中,从而避免不必要的排序操作。
最佳实践建议
基于这个问题的分析,我们建议YTsaurus用户:
- 在join操作后添加filter条件时,注意观察查询执行计划
- 如果发现不必要的排序操作,可以尝试重写filter条件表达式
- 对于数值比较,使用减法等于零的形式可能比直接比较更有效
- 定期更新SPYT版本以获取最新的优化修复
总结
YTsaurus团队持续优化SPYT引擎的性能表现,这次修复进一步提升了join操作的效率。理解Spark优化器的工作原理有助于开发人员编写更高效的查询,避免潜在的性能陷阱。通过合理设计查询表达式和利用系统提供的优化手段,可以充分发挥YTsaurus分布式计算平台的优势。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00