YTsaurus项目中SPYT引擎的冗余排序问题分析与优化
背景介绍
在YTsaurus项目的SPYT(Spark on YTsaurus)引擎使用过程中,开发人员发现了一个关于查询优化的问题。当在DataFrame的join操作后添加where条件时,查询执行计划会不必要地引入排序操作,导致性能下降。这个问题与之前报告过的类似问题有所不同,值得深入分析。
问题现象
开发人员在使用SPYT引擎时,构建了一个包含join和where条件的查询。基础表已经按照[market, deal_id, unix_timestamp]进行了排序,理论上join操作可以直接利用现有的排序属性。然而,当添加特定的where条件后,查询计划却意外地增加了排序阶段。
具体来说,当执行以下类型的查询时:
deals.join(books, on=[*STORAGE_INFO_KEY])
.where(F.floor((deals.unix_timestamp + 1) / 10) == F.floor(books.unix_timestamp / 10))
即使输入表已经按照join键排序,SPYT仍然会在join前插入排序操作,这显然是冗余的,会影响查询性能。
技术分析
问题根源
经过深入分析,发现问题出在Spark查询优化器的处理逻辑上。当join操作后跟有filter条件时,Spark优化器可能会将filter条件"下推"到join条件中。这种优化在某些情况下是有益的,但在YTsaurus的上下文中却导致了不必要的排序。
具体来说,优化器会将原始join条件[market, deal_id]扩展为包含filter表达式的新join条件,如[market, deal_id, unix_timestamp/10]。由于表数据没有按照这个新的复合键排序,优化器就决定插入排序操作。
解决方案
YTsaurus团队已经修复了这个问题,修复方案将在下一个版本中发布。修复的核心思路是:
- 保持原始的join条件不变,避免引入新的排序键
- 将复杂的filter条件保留在join后的阶段处理
- 在某些情况下,可以重写filter条件表达式,使其不会被优化器错误地"下推"
例如,可以将原来的filter条件:
F.floor((deals.unix_timestamp + 1) / 10) == F.floor(books.unix_timestamp / 10)
改写为等效但不会被优化器错误处理的表达式:
F.floor((deals.unix_timestamp + 1) / 10) - F.floor(books.unix_timestamp / 10) == 0
这种改写可以防止优化器将条件错误地合并到join条件中,从而避免不必要的排序操作。
最佳实践建议
基于这个问题的分析,我们建议YTsaurus用户:
- 在join操作后添加filter条件时,注意观察查询执行计划
- 如果发现不必要的排序操作,可以尝试重写filter条件表达式
- 对于数值比较,使用减法等于零的形式可能比直接比较更有效
- 定期更新SPYT版本以获取最新的优化修复
总结
YTsaurus团队持续优化SPYT引擎的性能表现,这次修复进一步提升了join操作的效率。理解Spark优化器的工作原理有助于开发人员编写更高效的查询,避免潜在的性能陷阱。通过合理设计查询表达式和利用系统提供的优化手段,可以充分发挥YTsaurus分布式计算平台的优势。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00