Apache Kyuubi中Spark血缘关系解析的缺陷分析与修复
背景介绍
Apache Kyuubi是一个开源的分布式SQL引擎,它提供了JDBC接口来执行SQL查询。在数据处理领域,数据血缘(Lineage)追踪是一个重要功能,它可以帮助用户理解数据的来源和流转过程。Kyuubi通过org.apache.kyuubi.plugin.lineage.Lineage类来记录SQL操作的数据血缘信息。
问题发现
在特定场景下,Kyuubi生成的血缘关系对象会出现错误。具体表现为:当用户通过临时视图(temporary view)向目标表插入数据时,系统本应生成完整的血缘关系信息,但实际上却生成了一个值为None的空对象。
问题复现步骤
- 首先创建一个基于CSV文件的临时视图:
CREATE OR REPLACE TEMPORARY VIEW temp_view
(
`a` STRING COMMENT '',
`b` STRING COMMENT ''
)
USING csv OPTIONS(
sep='\t',
path='数据文件路径'
);
- 然后执行插入操作,将临时视图数据写入目标表:
insert overwrite table test_db.test_table_from_dir
SELECT
`a`,
`b`
FROM temp_view
- 在执行上述插入语句时,系统尝试生成血缘关系信息,但结果不正确。
预期与实际的差异
按照预期,系统应该生成如下完整的血缘关系信息:
inputTables(List())
outputTables(List(spark_catalog.test_db.test_table_from_dir))
columnLineage(List(ColumnLineage(spark_catalog.test_db.test_table_from_dir.a0,Set()), ColumnLineage(spark_catalog.test_db.test_table_from_dir.b0,Set())))
但实际上,系统生成了一个None值,导致血缘信息完全缺失。
问题根源分析
通过代码分析发现,问题出在LogicalPlan对象的解析逻辑上。当前实现中,当解析过程中遇到某些特殊情况时,系统会触发"try-recover"自我保护机制,导致最终返回None值而不是正确的血缘关系对象。
问题影响
单元测试环境
在单元测试中,当代码尝试获取这个None值时,会抛出None.get异常,导致测试失败。异常堆栈显示:
None.get
java.util.NoSuchElementException: None.get
at scala.None$.get(Option.scala:529)
生产环境
在生产环境中,这个None值会导致血缘关系功能完全失效,用户无法获取任何关于数据流转的信息,严重影响数据治理和追踪能力。
解决方案
针对这个问题,社区已经提出了修复方案。修复的核心思路是改进LogicalPlan的解析逻辑,确保在遇到临时视图等特殊情况时,仍能正确生成血缘关系信息,而不是简单地返回None值。
修复后的代码能够正确处理临时视图到目标表的数据流转场景,确保血缘关系的完整性和准确性。这对于依赖Kyuubi进行数据治理的企业用户来说尤为重要,因为它保证了数据流转过程的可追溯性。
总结
数据血缘是数据治理的重要组成部分,Kyuubi作为SQL执行引擎,其血缘关系功能的稳定性直接影响用户的数据管理能力。这次修复不仅解决了一个具体的技术问题,也提升了整个系统在复杂场景下的可靠性。对于使用Kyuubi的用户来说,升级到包含此修复的版本将获得更稳定的血缘关系追踪能力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00