TorchView 使用教程
2024-09-13 05:26:18作者:宣利权Counsellor
1. 项目介绍
TorchView 是一个用于可视化 PyTorch 模型的开源工具。它能够以图形的形式展示 PyTorch 模型的结构,包括张量、模块、torch.functions 等信息。TorchView 类似于 Keras 中的 plot_model 功能,但提供了更多的自定义选项和功能。
TorchView 的主要特点包括:
- 支持 PyTorch 版本 ≥ 1.7
- 提供多种可视化选项,如显示张量形状、隐藏内部张量等
- 支持元张量(meta tensors),避免在可视化过程中消耗大量内存
- 支持递归模块的展开和折叠
2. 项目快速启动
安装
首先,你需要安装 graphviz:
pip install graphviz
然后,安装 TorchView:
pip install torchview
或者,如果你想安装最新版本,可以直接从 GitHub 安装:
pip install git+https://github.com/mert-kurttutan/torchview.git
使用示例
以下是一个简单的使用示例,展示如何使用 TorchView 可视化一个简单的 PyTorch 模型:
from torchview import draw_graph
import torch
import torch.nn as nn
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.fc1 = nn.Linear(128, 64)
self.fc2 = nn.Linear(64, 10)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
model = MLP()
batch_size = 2
# 使用 TorchView 可视化模型
model_graph = draw_graph(model, input_size=(batch_size, 128), device='meta')
model_graph.visual_graph
3. 应用案例和最佳实践
案例1:可视化复杂的 ResNet 模型
以下代码展示了如何使用 TorchView 可视化一个复杂的 ResNet 模型,并展开嵌套模块:
import torchvision
from torchview import draw_graph
model = torchvision.models.resnet18()
model_graph = draw_graph(model, input_size=(1, 3, 224, 224), expand_nested=True)
model_graph.visual_graph
案例2:隐藏内部张量和函数
在某些情况下,你可能希望隐藏模型的内部张量和函数,以便更清晰地查看模型的结构。以下代码展示了如何实现这一点:
model_graph = draw_graph(MLP(), input_size=(2, 128), hide_inner_tensors=True, hide_module_functions=True)
model_graph.visual_graph
4. 典型生态项目
TensorBoard
TensorBoard 是另一个常用的 PyTorch 模型可视化工具,它提供了丰富的功能,包括模型结构可视化、训练过程中的指标监控等。你可以通过以下方式使用 TensorBoard 可视化模型:
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("runs/mlp")
writer.add_graph(MLP(), torch.rand(2, 128))
writer.close()
Netron
Netron 是一个用于可视化深度学习模型的工具,支持多种模型格式,包括 ONNX、TensorFlow 等。你可以通过以下方式使用 Netron 可视化模型:
pip install netron
netron path/to/your/model.onnx
通过结合使用 TorchView 和其他生态项目,你可以更全面地理解和分析你的 PyTorch 模型。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
436
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
283
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871