lm-evaluation-harness项目中MMLU任务的两种变体解析
2025-05-26 21:19:33作者:温玫谨Lighthearted
在自然语言处理评估领域,EleutherAI的lm-evaluation-harness项目提供了对大型语言模型进行全面评估的能力。其中,MMLU(Massive Multitask Language Understanding)任务作为评估模型多任务理解能力的重要基准,在项目中提供了多种评估变体。
MMLU任务的基本形式
标准的MMLU评估采用多选题形式,每个问题包含题干和四个选项。评估时,模型需要根据题干和选项选择最合适的答案。这种形式直接反映了模型在真实场景下的推理和选择能力。
两种特殊变体
项目提供了两种特殊的MMLU评估变体:mmlu_continuation和mmlu_generative。
mmlu_generative变体
mmlu_generative是为无法直接计算对数概率的模型设计的生成式评估方式。与标准MMLU不同,它不是让模型从给定选项中选择,而是要求模型直接生成答案。这种形式更接近开放式问答场景,对模型的生成能力提出了更高要求。
mmlu_continuation变体
mmlu_continuation采用完形填空(cloze)风格的多选题评估方式,但与标准形式有重要区别:
- 不会将所有选项同时放入上下文中
- 评估时会将每个选项分别与题干组合,形成多个独立的问题实例
- 模型需要分别评估每个"题干+单个选项"组合的合理性
这种设计使得评估过程更加细致,能够更准确地衡量模型对每个选项的理解程度。
自定义评估配置
用户可以根据需要自定义MMLU的评估方式。例如,要实现完形填空风格的评估,可以修改配置文件中的doc_to_choice字段,保留选项在上下文中的显示。一个典型的配置示例如下:
dataset_path: hails/mmlu_no_train
test_split: test
fewshot_split: dev
fewshot_config:
sampler: first_n
output_type: multiple_choice
doc_to_text: "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:"
doc_to_choice: {{choices}}
doc_to_target: answer
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
这种配置方式既保留了选项在上下文中的显示,又实现了完形填空的评估风格,为研究者提供了灵活的评估方案选择。
理解这些评估变体的特点和适用场景,对于设计合理的模型评估实验至关重要。不同的评估方式可能适用于不同的模型架构和训练目标,研究者应根据具体需求选择合适的评估方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355