lm-evaluation-harness项目中MMLU任务的两种变体解析
2025-05-26 23:43:37作者:温玫谨Lighthearted
在自然语言处理评估领域,EleutherAI的lm-evaluation-harness项目提供了对大型语言模型进行全面评估的能力。其中,MMLU(Massive Multitask Language Understanding)任务作为评估模型多任务理解能力的重要基准,在项目中提供了多种评估变体。
MMLU任务的基本形式
标准的MMLU评估采用多选题形式,每个问题包含题干和四个选项。评估时,模型需要根据题干和选项选择最合适的答案。这种形式直接反映了模型在真实场景下的推理和选择能力。
两种特殊变体
项目提供了两种特殊的MMLU评估变体:mmlu_continuation和mmlu_generative。
mmlu_generative变体
mmlu_generative是为无法直接计算对数概率的模型设计的生成式评估方式。与标准MMLU不同,它不是让模型从给定选项中选择,而是要求模型直接生成答案。这种形式更接近开放式问答场景,对模型的生成能力提出了更高要求。
mmlu_continuation变体
mmlu_continuation采用完形填空(cloze)风格的多选题评估方式,但与标准形式有重要区别:
- 不会将所有选项同时放入上下文中
- 评估时会将每个选项分别与题干组合,形成多个独立的问题实例
- 模型需要分别评估每个"题干+单个选项"组合的合理性
这种设计使得评估过程更加细致,能够更准确地衡量模型对每个选项的理解程度。
自定义评估配置
用户可以根据需要自定义MMLU的评估方式。例如,要实现完形填空风格的评估,可以修改配置文件中的doc_to_choice字段,保留选项在上下文中的显示。一个典型的配置示例如下:
dataset_path: hails/mmlu_no_train
test_split: test
fewshot_split: dev
fewshot_config:
sampler: first_n
output_type: multiple_choice
doc_to_text: "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:"
doc_to_choice: {{choices}}
doc_to_target: answer
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
这种配置方式既保留了选项在上下文中的显示,又实现了完形填空的评估风格,为研究者提供了灵活的评估方案选择。
理解这些评估变体的特点和适用场景,对于设计合理的模型评估实验至关重要。不同的评估方式可能适用于不同的模型架构和训练目标,研究者应根据具体需求选择合适的评估方案。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44