Java非JPA持久化框架对比指南
项目介绍
本指南基于Java Persistence Frameworks Comparison开源项目,该项目旨在比较非JPA(Java Persistence API)的SQL映射框架,包括但不限于jOOQ、Spring JDBCTemplate、MyBatis等,以帮助开发者选择最适合其项目需求的数据库访问层技术。作者通过一系列实际应用场景的实现,分析了不依赖于JPA的标准SQL映射工具在日常开发中的应用,特别适合那些对JPA感到失望或寻求更高效、更轻量级解决方案的团队。
项目快速启动
环境准备
确保你的开发环境已配置好Java JDK,并安装了Gradle。此外,你需要一个PostgreSQL数据库来运行示例代码。
克隆项目
从GitHub克隆项目到本地:
git clone https://github.com/bwajtr/java-persistence-frameworks-comparison.git
配置数据库连接
编辑application.properties文件,填入你的PostgreSQL数据库连接信息。
准备数据库结构
执行脚本创建必要的表和存储过程:
psql -U [username] -d [database_name] -f create-script.sql
psql -U [username] -d [database_name] -f register_employee.sql
运行测试
使用Gradle执行JUnit测试以验证一切是否设置正确:
./gradlew test
若要使IDE中的单元测试通过,可能还需要配置EBean的字节码增强。
应用案例和最佳实践
项目中实现了多个场景,如根据主键获取单个实体、基于条件查询实体列表、保存新实体并返回主键等。每个场景都有详细的代码示例,展示了如何在不同框架下执行这些操作。例如,使用jOOQ进行复杂查询时,能够利用其流畅的API构造SQL查询,而保持代码的可读性。
快速实例:Spring JDBCTemplate
在简单的数据插入例子中,使用Spring JDBCTemplate可能如下所示:
@Autowired
private JdbcTemplate jdbcTemplate;
public void insertUser(User user) {
String sql = "INSERT INTO users(name, email) VALUES (?, ?)";
KeyHolder keyHolder = new GeneratedKeyHolder();
jdbcTemplate.update(con -> {
PreparedStatement ps = con.prepareStatement(sql, Statement.RETURN_GENERATED_KEYS);
ps.setString(1, user.getName());
ps.setString(2, user.getEmail());
return ps;
}, keyHolder);
user.setId(keyHolder.getKey().longValue());
}
典型生态项目
虽然这个项目本身是对比不同的持久化库,但每个框架都拥有自己的生态系统,比如:
- jOOQ: 与高级数据库功能紧密集成,适合复杂的SQL操作,尤其对于需要充分利用数据库特性的项目。
- Spring JDBCTemplate: 作为Spring框架的一部分,它广泛应用于各种企业级应用,提供了简洁的数据库访问方式,尤其适合已经使用Spring Boot或其他Spring组件的项目。
- MyBatis: 提供XML配置或注解方式定义SQL,适合需要细粒度控制SQL执行的场景。
每个框架的选择不仅取决于技术特性,也应考虑团队的经验、项目需求以及许可成本等因素。通过深入研究此对比项目,开发者可以更好地评估这些框架在特定上下文下的适用性和优势。
以上内容提供了一个概览和快速入门的指导,建议详细阅读项目中的文档和源码以获得更深入的理解。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00