Viztracer在Python 3.11下使用exclude_files参数时的堆栈跟踪问题分析
问题背景
在使用Viztracer进行Python代码性能分析时,特别是针对PyTorch等大型框架的代码分析,开发者经常会使用exclude_files参数来过滤掉不需要跟踪的模块,以减少生成的跟踪数据量并提高分析效率。
问题现象
在Python 3.11环境下,当使用Viztracer的exclude_files参数过滤掉PyTorch的torch.export模块后,调用torch.distributed.pipelining.pipeline函数后,后续的函数调用跟踪结果出现了异常:只有堆栈深度小于等于4的函数调用被正确记录,更深层次的调用信息丢失。
技术分析
-
Python 3.11与3.12的行为差异
该问题仅在Python 3.11版本中出现,在Python 3.12中表现正常。这表明问题可能与Python 3.11版本中的某些内部机制变化有关。 -
堆栈跟踪机制
Viztracer通过拦截Python的函数调用事件来构建调用堆栈。当使用exclude_files过滤特定模块时,Viztracer需要维护一个复杂的过滤机制,这可能在某些情况下干扰了正常的堆栈跟踪过程。 -
PyTorch的特殊性
PyTorch框架内部使用了大量复杂的元编程和动态代码生成技术,特别是在分布式训练和管道并行等高级功能中。这些技术可能会与Viztracer的跟踪机制产生微妙的交互问题。
解决方案与建议
-
临时解决方案
对于Python 3.11用户,可以暂时避免使用exclude_files参数,或者考虑升级到Python 3.12版本。 -
替代方案
- 使用
log_sparse参数来减少跟踪条目数量 - 在跟踪完成后进行数据过滤处理
- 使用Perfetto等工具的选择性分析功能
- 使用
-
性能优化建议
对于大型项目分析,建议:- 明确分析目标,缩小跟踪范围
- 合理设置
max_stack_depth参数 - 考虑将长时间运行的分析任务分割为多个短任务
总结
这个问题揭示了在复杂Python环境下性能分析工具的潜在边界情况。Viztracer开发者已经确认了该问题并承诺尽快修复。对于需要深度分析PyTorch等框架的用户,建议关注工具更新,并根据实际需求选择合适的分析策略。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00