SigOpt 示例项目启动与配置教程
2025-05-21 20:12:26作者:裴麒琰
1. 项目的目录结构及介绍
SigOpt 示例项目包含多个目录,每个目录下都有相关的示例代码和配置文件。以下是项目的目录结构及简要介绍:
bert-distillation-multimetric: BERT模型蒸馏多指标优化示例classifier: 分类器示例,包括SigOpt的使用dnn-tuning-nvidia-mxnet: 使用NVIDIA MXNet深度神经网络调优示例estimated-training-time: 估算训练时间示例get-started: SigOpt入门示例java: Java环境中使用SigOpt的示例metric-constraints-demo: 指标约束演示multimetric-timeseries: 多指标时间序列优化示例optimizing-memn2n: 优化记忆网络示例other-languages: 使用SigOpt的其他语言示例stanford-augmented-image-classification: 斯坦福增强图像分类示例stanford-car-classification: 斯坦福车辆分类示例surprise-py-recsys: 使用Surprise库的推荐系统示例test: 测试项目,已移除text-classifier: 文本分类器示例vision-nas-search-keras-cifar-ray: 视觉NAS搜索Keras CIFAR示例xgboost-integration-examples: XGBoost集成示例xgboost-py-classifier: XGBoost Python分类器示例xgboost-py-regression: XGBoost Python回归示例.gitignore: Git忽略文件.travis.yml: Travis CI配置文件CODEOWNERS: 代码所有者文件LICENSE: MIT许可证文件README.md: 项目说明文件
每个目录下通常包含一个README.md文件,用于说明该示例的具体内容和如何运行。
2. 项目的启动文件介绍
项目的启动文件通常是每个目录下的主脚本文件,例如run_example.py或者直接是example.ipynb(Jupyter Notebook文件)。这些文件包含了执行示例所需的全部代码,从数据加载、模型构建到使用SigOpt进行参数优化。
以get-started目录为例,启动文件可能是get_started.py,该文件会指导用户完成一个简单的SigOpt优化流程。
# 示例启动文件内容(get_started.py)
import sigopt
# 创建SigOpt客户端实例
client = sigopt.create_client("your_api_token")
# 定义要优化的函数
def objective(params):
# 这里是模型训练和评估的代码
# 返回一个数值指标,例如损失函数值
return loss
# 开始优化过程
experiment = client.create_experiment(
name="example_experiment",
parameters=[
# 定义优化参数
{"name": "param1", "type": "double", "min": 0.0, "max": 1.0},
# 更多参数...
],
objective={"name": "loss", "type": "minimize"}
)
# 运行优化
for _ in range(10): # 最多迭代10次
suggestion = client.get_suggestion(experiment.id)
loss = objective(suggestion.parameters)
client.send_observation(experiment.id, suggestion.id, loss)
# 分析优化结果
client.get_experiment(experiment.id)
3. 项目的配置文件介绍
配置文件通常用于定义项目运行时的环境和参数,以便于不同环境下的复现和调整。
config.json: JSON格式的配置文件,可以包含API密钥、数据集路径、超参数范围等。.travis.yml: 特定于Travis CI的配置文件,用于自动化测试和构建。
以config.json为例,它可能包含以下内容:
{
"api_token": "your_sigopt_api_token",
"dataset_path": "/path/to/your/dataset",
"params": {
"learning_rate": {"min": 0.001, "max": 0.1},
"batch_size": {"min": 32, "max": 128}
}
}
在使用配置文件时,代码会读取这些配置,并根据定义的参数范围和值进行优化。这样可以避免硬编码,使得代码更加灵活和易于维护。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1