SigOpt 示例项目启动与配置教程
2025-05-21 20:16:40作者:裴麒琰
1. 项目的目录结构及介绍
SigOpt 示例项目包含多个目录,每个目录下都有相关的示例代码和配置文件。以下是项目的目录结构及简要介绍:
bert-distillation-multimetric
: BERT模型蒸馏多指标优化示例classifier
: 分类器示例,包括SigOpt的使用dnn-tuning-nvidia-mxnet
: 使用NVIDIA MXNet深度神经网络调优示例estimated-training-time
: 估算训练时间示例get-started
: SigOpt入门示例java
: Java环境中使用SigOpt的示例metric-constraints-demo
: 指标约束演示multimetric-timeseries
: 多指标时间序列优化示例optimizing-memn2n
: 优化记忆网络示例other-languages
: 使用SigOpt的其他语言示例stanford-augmented-image-classification
: 斯坦福增强图像分类示例stanford-car-classification
: 斯坦福车辆分类示例surprise-py-recsys
: 使用Surprise库的推荐系统示例test
: 测试项目,已移除text-classifier
: 文本分类器示例vision-nas-search-keras-cifar-ray
: 视觉NAS搜索Keras CIFAR示例xgboost-integration-examples
: XGBoost集成示例xgboost-py-classifier
: XGBoost Python分类器示例xgboost-py-regression
: XGBoost Python回归示例.gitignore
: Git忽略文件.travis.yml
: Travis CI配置文件CODEOWNERS
: 代码所有者文件LICENSE
: MIT许可证文件README.md
: 项目说明文件
每个目录下通常包含一个README.md
文件,用于说明该示例的具体内容和如何运行。
2. 项目的启动文件介绍
项目的启动文件通常是每个目录下的主脚本文件,例如run_example.py
或者直接是example.ipynb
(Jupyter Notebook文件)。这些文件包含了执行示例所需的全部代码,从数据加载、模型构建到使用SigOpt进行参数优化。
以get-started
目录为例,启动文件可能是get_started.py
,该文件会指导用户完成一个简单的SigOpt优化流程。
# 示例启动文件内容(get_started.py)
import sigopt
# 创建SigOpt客户端实例
client = sigopt.create_client("your_api_token")
# 定义要优化的函数
def objective(params):
# 这里是模型训练和评估的代码
# 返回一个数值指标,例如损失函数值
return loss
# 开始优化过程
experiment = client.create_experiment(
name="example_experiment",
parameters=[
# 定义优化参数
{"name": "param1", "type": "double", "min": 0.0, "max": 1.0},
# 更多参数...
],
objective={"name": "loss", "type": "minimize"}
)
# 运行优化
for _ in range(10): # 最多迭代10次
suggestion = client.get_suggestion(experiment.id)
loss = objective(suggestion.parameters)
client.send_observation(experiment.id, suggestion.id, loss)
# 分析优化结果
client.get_experiment(experiment.id)
3. 项目的配置文件介绍
配置文件通常用于定义项目运行时的环境和参数,以便于不同环境下的复现和调整。
config.json
: JSON格式的配置文件,可以包含API密钥、数据集路径、超参数范围等。.travis.yml
: 特定于Travis CI的配置文件,用于自动化测试和构建。
以config.json
为例,它可能包含以下内容:
{
"api_token": "your_sigopt_api_token",
"dataset_path": "/path/to/your/dataset",
"params": {
"learning_rate": {"min": 0.001, "max": 0.1},
"batch_size": {"min": 32, "max": 128}
}
}
在使用配置文件时,代码会读取这些配置,并根据定义的参数范围和值进行优化。这样可以避免硬编码,使得代码更加灵活和易于维护。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133