SigOpt 示例项目启动与配置教程
2025-05-21 10:54:22作者:裴麒琰
1. 项目的目录结构及介绍
SigOpt 示例项目包含多个目录,每个目录下都有相关的示例代码和配置文件。以下是项目的目录结构及简要介绍:
bert-distillation-multimetric: BERT模型蒸馏多指标优化示例classifier: 分类器示例,包括SigOpt的使用dnn-tuning-nvidia-mxnet: 使用NVIDIA MXNet深度神经网络调优示例estimated-training-time: 估算训练时间示例get-started: SigOpt入门示例java: Java环境中使用SigOpt的示例metric-constraints-demo: 指标约束演示multimetric-timeseries: 多指标时间序列优化示例optimizing-memn2n: 优化记忆网络示例other-languages: 使用SigOpt的其他语言示例stanford-augmented-image-classification: 斯坦福增强图像分类示例stanford-car-classification: 斯坦福车辆分类示例surprise-py-recsys: 使用Surprise库的推荐系统示例test: 测试项目,已移除text-classifier: 文本分类器示例vision-nas-search-keras-cifar-ray: 视觉NAS搜索Keras CIFAR示例xgboost-integration-examples: XGBoost集成示例xgboost-py-classifier: XGBoost Python分类器示例xgboost-py-regression: XGBoost Python回归示例.gitignore: Git忽略文件.travis.yml: Travis CI配置文件CODEOWNERS: 代码所有者文件LICENSE: MIT许可证文件README.md: 项目说明文件
每个目录下通常包含一个README.md文件,用于说明该示例的具体内容和如何运行。
2. 项目的启动文件介绍
项目的启动文件通常是每个目录下的主脚本文件,例如run_example.py或者直接是example.ipynb(Jupyter Notebook文件)。这些文件包含了执行示例所需的全部代码,从数据加载、模型构建到使用SigOpt进行参数优化。
以get-started目录为例,启动文件可能是get_started.py,该文件会指导用户完成一个简单的SigOpt优化流程。
# 示例启动文件内容(get_started.py)
import sigopt
# 创建SigOpt客户端实例
client = sigopt.create_client("your_api_token")
# 定义要优化的函数
def objective(params):
# 这里是模型训练和评估的代码
# 返回一个数值指标,例如损失函数值
return loss
# 开始优化过程
experiment = client.create_experiment(
name="example_experiment",
parameters=[
# 定义优化参数
{"name": "param1", "type": "double", "min": 0.0, "max": 1.0},
# 更多参数...
],
objective={"name": "loss", "type": "minimize"}
)
# 运行优化
for _ in range(10): # 最多迭代10次
suggestion = client.get_suggestion(experiment.id)
loss = objective(suggestion.parameters)
client.send_observation(experiment.id, suggestion.id, loss)
# 分析优化结果
client.get_experiment(experiment.id)
3. 项目的配置文件介绍
配置文件通常用于定义项目运行时的环境和参数,以便于不同环境下的复现和调整。
config.json: JSON格式的配置文件,可以包含API密钥、数据集路径、超参数范围等。.travis.yml: 特定于Travis CI的配置文件,用于自动化测试和构建。
以config.json为例,它可能包含以下内容:
{
"api_token": "your_sigopt_api_token",
"dataset_path": "/path/to/your/dataset",
"params": {
"learning_rate": {"min": 0.001, "max": 0.1},
"batch_size": {"min": 32, "max": 128}
}
}
在使用配置文件时,代码会读取这些配置,并根据定义的参数范围和值进行优化。这样可以避免硬编码,使得代码更加灵活和易于维护。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
530
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
338
401
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
885
595
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246