SigOpt 示例项目启动与配置教程
2025-05-21 06:13:21作者:裴麒琰
1. 项目的目录结构及介绍
SigOpt 示例项目包含多个目录,每个目录下都有相关的示例代码和配置文件。以下是项目的目录结构及简要介绍:
bert-distillation-multimetric: BERT模型蒸馏多指标优化示例classifier: 分类器示例,包括SigOpt的使用dnn-tuning-nvidia-mxnet: 使用NVIDIA MXNet深度神经网络调优示例estimated-training-time: 估算训练时间示例get-started: SigOpt入门示例java: Java环境中使用SigOpt的示例metric-constraints-demo: 指标约束演示multimetric-timeseries: 多指标时间序列优化示例optimizing-memn2n: 优化记忆网络示例other-languages: 使用SigOpt的其他语言示例stanford-augmented-image-classification: 斯坦福增强图像分类示例stanford-car-classification: 斯坦福车辆分类示例surprise-py-recsys: 使用Surprise库的推荐系统示例test: 测试项目,已移除text-classifier: 文本分类器示例vision-nas-search-keras-cifar-ray: 视觉NAS搜索Keras CIFAR示例xgboost-integration-examples: XGBoost集成示例xgboost-py-classifier: XGBoost Python分类器示例xgboost-py-regression: XGBoost Python回归示例.gitignore: Git忽略文件.travis.yml: Travis CI配置文件CODEOWNERS: 代码所有者文件LICENSE: MIT许可证文件README.md: 项目说明文件
每个目录下通常包含一个README.md文件,用于说明该示例的具体内容和如何运行。
2. 项目的启动文件介绍
项目的启动文件通常是每个目录下的主脚本文件,例如run_example.py或者直接是example.ipynb(Jupyter Notebook文件)。这些文件包含了执行示例所需的全部代码,从数据加载、模型构建到使用SigOpt进行参数优化。
以get-started目录为例,启动文件可能是get_started.py,该文件会指导用户完成一个简单的SigOpt优化流程。
# 示例启动文件内容(get_started.py)
import sigopt
# 创建SigOpt客户端实例
client = sigopt.create_client("your_api_token")
# 定义要优化的函数
def objective(params):
    # 这里是模型训练和评估的代码
    # 返回一个数值指标,例如损失函数值
    return loss
# 开始优化过程
experiment = client.create_experiment(
    name="example_experiment",
    parameters=[
        # 定义优化参数
        {"name": "param1", "type": "double", "min": 0.0, "max": 1.0},
        # 更多参数...
    ],
    objective={"name": "loss", "type": "minimize"}
)
# 运行优化
for _ in range(10):  # 最多迭代10次
    suggestion = client.get_suggestion(experiment.id)
    loss = objective(suggestion.parameters)
    client.send_observation(experiment.id, suggestion.id, loss)
# 分析优化结果
client.get_experiment(experiment.id)
3. 项目的配置文件介绍
配置文件通常用于定义项目运行时的环境和参数,以便于不同环境下的复现和调整。
config.json: JSON格式的配置文件,可以包含API密钥、数据集路径、超参数范围等。.travis.yml: 特定于Travis CI的配置文件,用于自动化测试和构建。
以config.json为例,它可能包含以下内容:
{
    "api_token": "your_sigopt_api_token",
    "dataset_path": "/path/to/your/dataset",
    "params": {
        "learning_rate": {"min": 0.001, "max": 0.1},
        "batch_size": {"min": 32, "max": 128}
    }
}
在使用配置文件时,代码会读取这些配置,并根据定义的参数范围和值进行优化。这样可以避免硬编码,使得代码更加灵活和易于维护。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447