推荐一个神奇的工具:graphql-deduplicator
在GraphQL的世界里,数据冗余有时会成为性能瓶颈。想象一下,你在查询大量重复数据时,每个实体都附带有大量的详细信息,这不仅增大了响应的体积,还可能导致解析和内存消耗的问题。为了解决这个问题,我们向您推荐一个高效的解决方案——graphql-deduplicator。
项目介绍
graphql-deduplicator是一个智能的GraphQL响应去重器,它能有效地从返回结果中移除重复的实体,仅保留必要的__typename和id字段。通过这种方式,您可以轻松地处理包含大量重复数据的大规模查询,而无需担心响应大小或解析速度。
项目技术分析
这个库的工作原理是利用__typename和id这两个特殊的字段来构建资源标识符,通过对数据进行规范化处理,确保客户端(如apollo-client)只读取第一次出现的资源实例,并忽略后续的重复项。graphql-deduplicator会在删除多余的字段后,将优化过的响应传递给客户端,显著降低了数据传输量。
应用场景
在诸如电影排期系统等实际应用中,当查询某一日期的所有场次时,可能每个场次都关联同一部电影。传统的GraphQL响应会包含重复的电影详情,造成响应过大。但有了graphql-deduplicator,电影详情只会被发送一次,极大地减少了网络传输的数据量。
项目特点
- 兼容性广:与任何支持自动添加
__typename和id的GraphQL客户端兼容,特别测试过与apollo-client的配合。 - 智能化:基于
__typename和id字段智能识别和去除重复实体,不影响正常业务逻辑。 - 高效:大幅减少响应大小,加快解析速度,降低内存占用。
- 易用:只需简单的配置即可在服务器端或客户端启用。
使用指南
无论是服务端还是客户端,集成graphql-deduplicator都非常简单。对于服务器端,可以使用formatResponse来处理响应;而在客户端,可以设置ApolloLink的afterware来处理响应。别忘了,为了不破坏常规的GraphQL客户端使用,应在请求参数中指定deduplicate以启用压缩功能。
现在,是时候为你的GraphQL应用引入graphql-deduplicator,享受更高效的性能和更小的负载了吧!立即尝试这个出色的开源项目,让您的应用程序运行得更加顺畅。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00