Apache Submarine: 深海数据挖掘平台搭建指南
2024-08-07 03:44:05作者:田桥桑Industrious
一、项目介绍
Apache Submarine 是一个用于数据科学家和机器学习工程师的端到端平台,它提供了一系列的功能来优化深度学习模型训练过程中的资源管理和作业调度。Submarine 支持多种流行的框架如 TensorFlow 和 PyTorch,在 Kubernetes 集群上实现高效的模型训练。
主要特性包括:
- 统一资源管理:自动为训练任务分配GPU和其他资源。
- 作业调度:支持多任务并行执行和优先级控制。
- 可视化界面:提供了交互式的Web UI以监控和管理作业状态。
- 模型版本控制:可以保存和比较不同的模型版本。
- 可扩展性:轻松在多个节点集群上部署大规模训练任务。
二、项目快速启动
以下是启动 Apache Submarine 的基本步骤:
-
克隆仓库
git clone https://github.com/apache/submarine.git cd submarine -
安装依赖
使用
pip install -r requirements.txt来安装所有必需的Python库。 -
部署 Submarine
Submarine 可以通过 Helm Chart 在Kubernetes上进行部署:
helm repo add submarine https://submarine.apache.org/charts helm repo update helm install my-submarine submarine/submarine --namespace submarine-system确保你的Kubernetes集群已经配置好,并且Helm已正确安装。
-
检查部署状态
使用以下命令确认Submarine服务是否正常运行:
kubectl get pods,services -n submarine-system
三、应用案例和最佳实践
应用案例
自动化机器学习工作流程
借助Submarine,可以自动化MLPipeline,从数据预处理到模型训练和评估,全部自动化完成。
多租户环境下的资源共享
在企业中,多个团队可能共享同一套基础设施。Submarine能够有效地管理这些资源,确保各个团队间的公平分配。
最佳实践
- 定期更新:保持Submarine和相关框架的最新版本,确保安全性和性能提升。
- 资源预留策略:合理设置作业的资源预留参数,避免资源浪费和等待时间过长。
四、典型生态项目
- TensorFlow Serving: 集成Submarine与TensorFlow Serving,实现实时或批量预测。
- Spark MLlib: 结合Submarine与Apache Spark,加快大数据分析和处理的速度。
- Jupyter Notebook: 利用Submarine提供的计算资源,加速Jupyter Notebook内的数据分析和建模过程。
以上是基于Apache Submarine的概述及如何快速启动该项目的方法,以及一些实际的应用场景和推荐的做法。希望这能帮助你更好地理解和利用这个强大的平台。如果有更具体的需求或技术细节上的疑问,建议查阅官方文档或社区论坛获取更多信息。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
640
147
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100