Apache Submarine: 深海数据挖掘平台搭建指南
2024-08-07 03:44:05作者:田桥桑Industrious
一、项目介绍
Apache Submarine 是一个用于数据科学家和机器学习工程师的端到端平台,它提供了一系列的功能来优化深度学习模型训练过程中的资源管理和作业调度。Submarine 支持多种流行的框架如 TensorFlow 和 PyTorch,在 Kubernetes 集群上实现高效的模型训练。
主要特性包括:
- 统一资源管理:自动为训练任务分配GPU和其他资源。
- 作业调度:支持多任务并行执行和优先级控制。
- 可视化界面:提供了交互式的Web UI以监控和管理作业状态。
- 模型版本控制:可以保存和比较不同的模型版本。
- 可扩展性:轻松在多个节点集群上部署大规模训练任务。
二、项目快速启动
以下是启动 Apache Submarine 的基本步骤:
-
克隆仓库
git clone https://github.com/apache/submarine.git cd submarine -
安装依赖
使用
pip install -r requirements.txt来安装所有必需的Python库。 -
部署 Submarine
Submarine 可以通过 Helm Chart 在Kubernetes上进行部署:
helm repo add submarine https://submarine.apache.org/charts helm repo update helm install my-submarine submarine/submarine --namespace submarine-system确保你的Kubernetes集群已经配置好,并且Helm已正确安装。
-
检查部署状态
使用以下命令确认Submarine服务是否正常运行:
kubectl get pods,services -n submarine-system
三、应用案例和最佳实践
应用案例
自动化机器学习工作流程
借助Submarine,可以自动化MLPipeline,从数据预处理到模型训练和评估,全部自动化完成。
多租户环境下的资源共享
在企业中,多个团队可能共享同一套基础设施。Submarine能够有效地管理这些资源,确保各个团队间的公平分配。
最佳实践
- 定期更新:保持Submarine和相关框架的最新版本,确保安全性和性能提升。
- 资源预留策略:合理设置作业的资源预留参数,避免资源浪费和等待时间过长。
四、典型生态项目
- TensorFlow Serving: 集成Submarine与TensorFlow Serving,实现实时或批量预测。
- Spark MLlib: 结合Submarine与Apache Spark,加快大数据分析和处理的速度。
- Jupyter Notebook: 利用Submarine提供的计算资源,加速Jupyter Notebook内的数据分析和建模过程。
以上是基于Apache Submarine的概述及如何快速启动该项目的方法,以及一些实际的应用场景和推荐的做法。希望这能帮助你更好地理解和利用这个强大的平台。如果有更具体的需求或技术细节上的疑问,建议查阅官方文档或社区论坛获取更多信息。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895