Apache Submarine: 深海数据挖掘平台搭建指南
2024-08-07 03:44:05作者:田桥桑Industrious
一、项目介绍
Apache Submarine 是一个用于数据科学家和机器学习工程师的端到端平台,它提供了一系列的功能来优化深度学习模型训练过程中的资源管理和作业调度。Submarine 支持多种流行的框架如 TensorFlow 和 PyTorch,在 Kubernetes 集群上实现高效的模型训练。
主要特性包括:
- 统一资源管理:自动为训练任务分配GPU和其他资源。
- 作业调度:支持多任务并行执行和优先级控制。
- 可视化界面:提供了交互式的Web UI以监控和管理作业状态。
- 模型版本控制:可以保存和比较不同的模型版本。
- 可扩展性:轻松在多个节点集群上部署大规模训练任务。
二、项目快速启动
以下是启动 Apache Submarine 的基本步骤:
-
克隆仓库
git clone https://github.com/apache/submarine.git cd submarine -
安装依赖
使用
pip install -r requirements.txt来安装所有必需的Python库。 -
部署 Submarine
Submarine 可以通过 Helm Chart 在Kubernetes上进行部署:
helm repo add submarine https://submarine.apache.org/charts helm repo update helm install my-submarine submarine/submarine --namespace submarine-system确保你的Kubernetes集群已经配置好,并且Helm已正确安装。
-
检查部署状态
使用以下命令确认Submarine服务是否正常运行:
kubectl get pods,services -n submarine-system
三、应用案例和最佳实践
应用案例
自动化机器学习工作流程
借助Submarine,可以自动化MLPipeline,从数据预处理到模型训练和评估,全部自动化完成。
多租户环境下的资源共享
在企业中,多个团队可能共享同一套基础设施。Submarine能够有效地管理这些资源,确保各个团队间的公平分配。
最佳实践
- 定期更新:保持Submarine和相关框架的最新版本,确保安全性和性能提升。
- 资源预留策略:合理设置作业的资源预留参数,避免资源浪费和等待时间过长。
四、典型生态项目
- TensorFlow Serving: 集成Submarine与TensorFlow Serving,实现实时或批量预测。
- Spark MLlib: 结合Submarine与Apache Spark,加快大数据分析和处理的速度。
- Jupyter Notebook: 利用Submarine提供的计算资源,加速Jupyter Notebook内的数据分析和建模过程。
以上是基于Apache Submarine的概述及如何快速启动该项目的方法,以及一些实际的应用场景和推荐的做法。希望这能帮助你更好地理解和利用这个强大的平台。如果有更具体的需求或技术细节上的疑问,建议查阅官方文档或社区论坛获取更多信息。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322