Solr模块的Node.js使用技术文档
2024-12-20 22:53:09作者:郦嵘贵Just
1. 安装指南
在开始使用Solr模块前,确保您的系统中已经安装了Node.js环境。接下来,通过以下步骤安装Solr模块:
npm install solr
确保您能够连接到互联网以获取模块。
2. 项目使用说明
本模块提供了对Apache Solr搜索引擎的Node.js接口,允许您在Node.js应用程序中与Solr进行交互。
示例用法
以下是一个简单的示例,演示如何使用该模块添加文档、执行查询以及删除文档:
const solr = require('solr');
const client = solr.createClient();
const doc1 = {
id: '1',
title_t: 'Foo bar',
text_t: 'Fizz buzz frizzle'
};
const doc2 = {
id: '2',
title_t: 'Far boo',
text_t: 'Wuzz fizz drizzle'
};
client.add(doc1, function(err) {
if (err) throw err;
console.log('第一个文档已添加');
client.add(doc2, function(err) {
if (err) throw err;
console.log('第二个文档已添加');
client.commit(function(err) {
const query = 'text_t:fizz';
client.query(query, function(err, response) {
if (err) throw err;
const responseObj = JSON.parse(response);
console.log('搜索 "' + query + '" 返回了 ' +
responseObj.response.numFound + ' 个文档。');
console.log('第一个文档标题: ' +
responseObj.response.docs[0].title_t);
console.log('第二个文档标题: ' +
responseObj.response.docs[1].title_t);
client.del(null, query, function(err, response) {
if (err) throw err;
console.log('删除所有符合查询条件的文档 "' + query + '"');
client.commit();
});
});
});
});
});
3. 项目API使用文档
创建客户端
使用 solr.createClient() 创建一个新的Solr客户端。
添加文档
使用 client.add(document, callback) 添加文档到Solr。
参数:
document: 要添加的文档对象。callback: 当操作完成时的回调函数。
提交更改
使用 client.commit(callback) 提交添加、删除或更新操作。
参数:
callback: 当提交完成时的回调函数。
查询
使用 client.query(query, callback) 来执行Solr查询。
参数:
query: 查询字符串。callback: 当查询完成时的回调函数。
删除文档
使用 client.del(id, query, callback) 删除文档。
参数:
id: 要删除的文档ID,或者为null时使用query参数。query: 删除操作的条件查询字符串。callback: 当删除完成时的回调函数。
4. 项目安装方式
请遵循以下步骤来安装项目:
- 确认您的系统已安装Node.js。
- 在命令行中执行
npm install solr命令来安装Solr模块。 - 在您的Node.js项目中引入模块并通过创建客户端来开始使用它。
以上就是关于Solr模块的Node.js使用的技术文档,希望能对您的项目开发有所帮助。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134