SageMaker Python SDK中模型评估指标在新版Studio UI中的显示问题解析
2025-07-04 02:43:20作者:毕习沙Eudora
sagemaker-python-sdk
A library for training and deploying machine learning models on Amazon SageMaker
问题背景
在使用AWS SageMaker Python SDK进行模型训练和注册时,开发者发现通过model.register()方法注册模型时添加的评估指标无法在新版SageMaker Studio UI中显示,但在经典版UI中可以正常查看。这一问题主要出现在TensorFlow模型的注册过程中。
问题现象
开发者使用以下代码注册模型并添加评估指标:
model_metrics = ModelMetrics(
model_statistics=MetricsSource(
s3_uri = Join(
on="/",
values=[step_evaluate_regressor.properties.ProcessingOutputConfig.Outputs["evaluation"].S3Output.S3Uri, "evaluation.json"]
),
content_type="application/json"
)
)
regressor_model.register(
inference_instances=["ml.m5.xlarge"],
transform_instances=["ml.m5.xlarge"],
model_package_group_name=regressor_model_package_name,
model_metrics=model_metrics,
)
评估指标JSON文件格式如下:
{"metrics": {"acc": {"value": 0.2973}, "precision": {"value": 0.8219}, "recall": {"value": 0.3648}, "f1": {"value": 0.4735}, "crossentropy": {"value": 1.3566}, "acc_mc": {"value": 0.3109}, "precision_mc": {"value": 0.8253}, "recall_mc": {"value": 0.3832}, "f1_mc": {"value": 0.492}, "crossentropy_mc": {"value": 1.5692}}}
问题分析
-
UI版本差异:最初,评估指标只能在经典版UI中显示,新版UI无法展示,这表明两个UI对模型指标的处理方式存在差异。
-
文件路径问题:部分开发者遇到"S3 key不存在"的错误,这通常是由于S3 URI路径中未包含评估文件名(如evaluation.json)导致的。
-
JSON格式兼容性:新版UI对评估指标的JSON格式可能有更严格的要求,虽然示例中的格式在经典UI中工作,但新版UI可能需要特定的schema。
解决方案
- 确保完整S3路径:在构建S3 URI时,必须明确包含评估文件名:
s3_uri = Join(
on="/",
values=[processing_job_output_path, "evaluation.json"]
)
-
等待AWS更新:AWS已在新版Studio UI中添加了对模型评估指标的支持,开发者无需修改代码即可看到指标显示在"Evaluate"面板中。
-
验证指标显示:开发者可以:
- 检查S3文件是否存在且可访问
- 确认JSON格式符合要求
- 在新旧版UI中对比指标显示情况
最佳实践
-
统一评估指标格式:建议使用AWS文档中推荐的模型卡片schema格式,确保兼容性。
-
测试验证:在注册模型后,立即检查新旧UI中的指标显示情况。
-
监控AWS更新:关注AWS的更新公告,了解新版UI功能增强情况。
总结
这一问题反映了AWS服务更新过程中可能出现的暂时性兼容问题。开发者应确保代码规范,同时保持对AWS服务更新的关注。目前,新版Studio UI已支持通过model.register()方法添加的评估指标显示,开发者可以正常使用这一功能。
sagemaker-python-sdk
A library for training and deploying machine learning models on Amazon SageMaker
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868