CogVideo项目中的竖屏视频生成技术解析
2025-05-21 16:47:58作者:庞眉杨Will
背景介绍
CogVideo作为THUDM团队开发的多模态视频生成模型,在1.5版本中提供了强大的图像到视频(I2V)生成能力。然而,在实际应用中,开发者发现模型在处理竖屏分辨率(如768×1360)时存在技术障碍,这引发了关于模型分辨率支持范围的深入探讨。
问题本质分析
通过技术社区的讨论和实际测试,我们发现问题的核心在于模型的旋转位置编码(Rotary Positional Embedding)实现机制。该机制在设计时假设了视频宽度大于高度的默认情况,导致当输入高度大于宽度时,张量维度计算出现不匹配。
具体表现为:当尝试生成768×1360分辨率的视频时,系统会抛出"RuntimeError: Sizes of tensors must match except in dimension 3"错误,提示张量尺寸在第三维度上不匹配(期望85但得到48)。
技术解决方案
1. 官方建议方案
项目维护者明确指出,要解决这一问题需要:
- 从源代码安装最新版diffusers库
- 获取最新的模型提交版本
- 确保使用正确的模型类型(I2V模型用于图像到视频,T2V模型用于文本到视频)
2. 社区验证方案
技术社区通过实践发现,可以通过修改旋转位置编码的实现逻辑来解决这一问题。关键点在于:
- 调整样本宽度和高度的预设值(原为170和96)
- 当检测到高度大于宽度时,交换两者的计算顺序
- 确保最终分辨率是16的倍数,以满足模型架构要求
3. 分辨率适配算法
项目中的SAT实现提供了一个可靠的分辨率适配算法:
def nearest_multiple_of_16(n):
lower_multiple = (n // 16) * 16
upper_multiple = (n // 16 + 1) * 16
return lower_multiple if abs(n - lower_multiple) < abs(n - upper_multiple) else upper_multiple
if img_H < img_W:
H = 96
W = int(nearest_multiple_of_16(img_W / img_H * H * 8)) // 8
else:
W = 96
H = int(nearest_multiple_of_16(img_H / img_W * W * 8)) // 8
实际应用建议
- 模型选择:明确区分I2V和T2V模型的使用场景,避免混用
- 分辨率设置:
- 优先使用官方推荐的横屏分辨率(如1360×768)
- 如需竖屏输出,建议采用修改后的代码实现
- 测试分辨率应保持16的倍数关系
- 环境配置:
- 使用pip从源码安装diffusers库
- 确保模型版本与代码兼容
- 生成质量:
- 横屏分辨率下画面稳定性更好
- 非常规比例可能导致画面拉伸或稳定性下降
技术展望
随着视频生成技术的发展,未来版本有望:
- 原生支持任意长宽比输入
- 改进位置编码机制,消除分辨率限制
- 提供更友好的API接口和错误提示
- 增强竖屏内容的生成质量
通过深入理解CogVideo的架构设计和位置编码机制,开发者可以更灵活地应用这一强大工具,创造出符合各种场景需求的视频内容。
登录后查看全文
热门项目推荐
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript037RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统Vue0404arkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架TypeScript040GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。02CS-Books
🔥🔥超过1000本的计算机经典书籍、个人笔记资料以及本人在各平台发表文章中所涉及的资源等。书籍资源包括C/C++、Java、Python、Go语言、数据结构与算法、操作系统、后端架构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经~01openGauss-server
openGauss kernel ~ openGauss is an open source relational database management systemC++0145
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp全栈开发课程中React实验项目的分类修正5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp课程中屏幕放大器知识点优化分析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
Visual-RFT项目中模型路径差异的技术解析 Beyla项目中的HTTP2连接检测问题解析 Microcks在OpenShift上部署Keycloak PostgreSQL的权限问题解析 RaspberryMatic项目中HmIP-BWTH温控器假期模式设置问题分析 Lets-Plot 库中条形图标签在坐标轴反转时的定位问题解析 BedrockConnect项目版本兼容性问题解析与解决方案 LiquidJS 10.21.0版本新增数组过滤功能解析 Mink项目中Selenium驱动切换iframe的兼容性问题分析 Lichess移动端盲棋模式字符串优化解析 sbctl验证功能JSON输出问题解析
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

React Native鸿蒙化仓库
C++
118
207

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
528
404

openGauss kernel ~ openGauss is an open source relational database management system
C++
63
145

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
392
37

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
98
251

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
297
1.02 K

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
42
40

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
357
341

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
583
41