CogVideo项目中的竖屏视频生成技术解析
2025-05-21 07:36:54作者:庞眉杨Will
背景介绍
CogVideo作为THUDM团队开发的多模态视频生成模型,在1.5版本中提供了强大的图像到视频(I2V)生成能力。然而,在实际应用中,开发者发现模型在处理竖屏分辨率(如768×1360)时存在技术障碍,这引发了关于模型分辨率支持范围的深入探讨。
问题本质分析
通过技术社区的讨论和实际测试,我们发现问题的核心在于模型的旋转位置编码(Rotary Positional Embedding)实现机制。该机制在设计时假设了视频宽度大于高度的默认情况,导致当输入高度大于宽度时,张量维度计算出现不匹配。
具体表现为:当尝试生成768×1360分辨率的视频时,系统会抛出"RuntimeError: Sizes of tensors must match except in dimension 3"错误,提示张量尺寸在第三维度上不匹配(期望85但得到48)。
技术解决方案
1. 官方建议方案
项目维护者明确指出,要解决这一问题需要:
- 从源代码安装最新版diffusers库
- 获取最新的模型提交版本
- 确保使用正确的模型类型(I2V模型用于图像到视频,T2V模型用于文本到视频)
2. 社区验证方案
技术社区通过实践发现,可以通过修改旋转位置编码的实现逻辑来解决这一问题。关键点在于:
- 调整样本宽度和高度的预设值(原为170和96)
- 当检测到高度大于宽度时,交换两者的计算顺序
- 确保最终分辨率是16的倍数,以满足模型架构要求
3. 分辨率适配算法
项目中的SAT实现提供了一个可靠的分辨率适配算法:
def nearest_multiple_of_16(n):
lower_multiple = (n // 16) * 16
upper_multiple = (n // 16 + 1) * 16
return lower_multiple if abs(n - lower_multiple) < abs(n - upper_multiple) else upper_multiple
if img_H < img_W:
H = 96
W = int(nearest_multiple_of_16(img_W / img_H * H * 8)) // 8
else:
W = 96
H = int(nearest_multiple_of_16(img_H / img_W * W * 8)) // 8
实际应用建议
- 模型选择:明确区分I2V和T2V模型的使用场景,避免混用
- 分辨率设置:
- 优先使用官方推荐的横屏分辨率(如1360×768)
- 如需竖屏输出,建议采用修改后的代码实现
- 测试分辨率应保持16的倍数关系
- 环境配置:
- 使用pip从源码安装diffusers库
- 确保模型版本与代码兼容
- 生成质量:
- 横屏分辨率下画面稳定性更好
- 非常规比例可能导致画面拉伸或稳定性下降
技术展望
随着视频生成技术的发展,未来版本有望:
- 原生支持任意长宽比输入
- 改进位置编码机制,消除分辨率限制
- 提供更友好的API接口和错误提示
- 增强竖屏内容的生成质量
通过深入理解CogVideo的架构设计和位置编码机制,开发者可以更灵活地应用这一强大工具,创造出符合各种场景需求的视频内容。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~053CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0353- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
307
337

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58