在Turing.jl中追踪变分推断的ELBO轨迹
2025-07-04 07:06:35作者:柏廷章Berta
变分推断(VI)是贝叶斯统计中一种重要的近似推断方法,它通过优化证据下界(ELBO)来近似后验分布。在使用Turing.jl进行变分推断时,监控ELBO的收敛情况对于评估推断质量至关重要。
ELBO追踪的基本方法
在Turing.jl v0.39及更高版本中,用户可以直接获取变分推断过程中ELBO的轨迹。以下是一个简单的示例:
@model function gdemo(x, y)
s² ~ InverseGamma(2, 3)
m ~ Normal(0, sqrt(s²))
x ~ Normal(m, sqrt(s²))
y ~ Normal(m, sqrt(s²))
end
m = gdemo(1.5, 2)
q = Turing.q_meanfield_gaussian(m)
q_avg, _, stats, _ = vi(m, q, 1000)
执行上述代码后,可以通过stats结构体访问每一步的ELBO值,并绘制其变化曲线:
plot([stat.elbo for stat in stats], xlabel="迭代次数", ylabel="ELBO")
高级定制化ELBO追踪
对于更精细的控制,Turing.jl提供了回调机制,允许用户自定义ELBO的计算方式。例如,可以:
- 每隔若干步记录一次ELBO
- 使用不同的蒙特卡洛采样数计算ELBO
- 记录平均参数下的ELBO值
以下是一个高级示例:
objective = RepGradELBO(1000) # 使用1000个样本计算ELBO
function callback(; stat, averaged_params, restructure, kwargs...)
if mod(stat.iteration, 10) == 1 # 每10步记录一次
q_avg = restructure(averaged_params)
elbo_avg = estimate_objective(objective, q_avg, Turing.Variational.make_logdensity(m))
(elbo_avg = elbo_avg,)
else
nothing
end
end
q_avg, _, stats, _ = vi(m, q, 1000; callback)
实际应用建议
-
收敛判断:观察ELBO曲线是否趋于平稳,可以作为判断变分推断是否收敛的依据。
-
采样数选择:对于复杂模型,可能需要增加蒙特卡洛采样数以获得更稳定的ELBO估计。
-
参数平均:使用平均参数计算ELBO可以减少随机波动,更清晰地反映优化趋势。
-
记录频率:对于长时间运行的推断,可以适当降低记录频率以减少内存占用。
通过这些方法,用户可以更好地监控和评估变分推断过程,确保获得高质量的近似后验分布。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137