在Turing.jl中追踪变分推断的ELBO轨迹
2025-07-04 11:53:32作者:柏廷章Berta
变分推断(VI)是贝叶斯统计中一种重要的近似推断方法,它通过优化证据下界(ELBO)来近似后验分布。在使用Turing.jl进行变分推断时,监控ELBO的收敛情况对于评估推断质量至关重要。
ELBO追踪的基本方法
在Turing.jl v0.39及更高版本中,用户可以直接获取变分推断过程中ELBO的轨迹。以下是一个简单的示例:
@model function gdemo(x, y)
s² ~ InverseGamma(2, 3)
m ~ Normal(0, sqrt(s²))
x ~ Normal(m, sqrt(s²))
y ~ Normal(m, sqrt(s²))
end
m = gdemo(1.5, 2)
q = Turing.q_meanfield_gaussian(m)
q_avg, _, stats, _ = vi(m, q, 1000)
执行上述代码后,可以通过stats结构体访问每一步的ELBO值,并绘制其变化曲线:
plot([stat.elbo for stat in stats], xlabel="迭代次数", ylabel="ELBO")
高级定制化ELBO追踪
对于更精细的控制,Turing.jl提供了回调机制,允许用户自定义ELBO的计算方式。例如,可以:
- 每隔若干步记录一次ELBO
- 使用不同的蒙特卡洛采样数计算ELBO
- 记录平均参数下的ELBO值
以下是一个高级示例:
objective = RepGradELBO(1000) # 使用1000个样本计算ELBO
function callback(; stat, averaged_params, restructure, kwargs...)
if mod(stat.iteration, 10) == 1 # 每10步记录一次
q_avg = restructure(averaged_params)
elbo_avg = estimate_objective(objective, q_avg, Turing.Variational.make_logdensity(m))
(elbo_avg = elbo_avg,)
else
nothing
end
end
q_avg, _, stats, _ = vi(m, q, 1000; callback)
实际应用建议
-
收敛判断:观察ELBO曲线是否趋于平稳,可以作为判断变分推断是否收敛的依据。
-
采样数选择:对于复杂模型,可能需要增加蒙特卡洛采样数以获得更稳定的ELBO估计。
-
参数平均:使用平均参数计算ELBO可以减少随机波动,更清晰地反映优化趋势。
-
记录频率:对于长时间运行的推断,可以适当降低记录频率以减少内存占用。
通过这些方法,用户可以更好地监控和评估变分推断过程,确保获得高质量的近似后验分布。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1