在Guardrails AI项目中通过Docker部署Azure OpenAI服务的最佳实践
2025-06-10 13:12:33作者:韦蓉瑛
背景介绍
Guardrails AI作为一个开源的AI安全框架,提供了对大型语言模型输出的验证和过滤功能。在实际生产环境中,许多企业选择将Guardrails与Azure OpenAI服务结合使用,以获得微软云平台提供的企业级安全性和可靠性保障。
核心挑战
在Docker环境中部署Guardrails与Azure OpenAI集成时,开发者面临几个关键挑战:
- 路由处理差异:Azure OpenAI的API端点路径与标准OpenAI不同
- 认证配置:需要正确处理Azure特有的认证参数
- 流式响应:处理Azure OpenAI的流式输出需要特殊处理
解决方案实现
1. FastAPI路由配置
在Guardrails API服务中,需要为Azure OpenAI添加特定的路由处理。核心实现是在FastAPI应用中添加以下路由处理器:
@router.post("/guards/{guard_name}/openai/v1/openai/deployments/{deployment_name}/chat/completions")
@handle_error
async def azure_openai_v1_chat_completions(guard_name: str, deployment_name: str, request: Request):
payload = await request.json()
decoded_guard_name = unquote_plus(guard_name)
guard_struct = guard_client.get_guard(decoded_guard_name)
# 验证Guard是否存在
if guard_struct is None:
raise HTTPException(
status_code=404,
detail=f"Guard {decoded_guard_name} 不存在"
)
# 转换Guard对象
guard = (
AsyncGuard.from_dict(guard_struct.to_dict())
if not isinstance(guard_struct, Guard)
else guard_struct
)
# 处理模型名称
if 'model' in payload and isinstance(payload['model'], str):
payload['model'] = f"azure/{payload['model']}"
else:
raise ValueError("请求中缺少有效的模型名称")
# 处理流式和非流式响应
stream = payload.get("stream", False)
if not stream:
execution = guard(num_reasks=0, **payload)
# 异步处理
if inspect.iscoroutine(execution):
validation_outcome = await execution
else:
validation_outcome = execution
# 转换响应格式
llm_response = guard.history.last.iterations.last.outputs.llm_response_info
result = outcome_to_chat_completion(
validation_outcome=validation_outcome,
llm_response=llm_response,
has_tool_gd_tool_call=has_tool_gd_tool_call,
)
return JSONResponse(content=result)
else:
# 流式响应处理
async def openai_streamer():
try:
guard_stream = guard(num_reasks=0, **payload)
for result in guard_stream:
chunk = json.dumps(
outcome_to_stream_response(validation_outcome=result)
)
yield f"data: {chunk}\n\n"
yield "\n"
except Exception as e:
yield f"data: {json.dumps({'error': {'message':str(e)}})}\n\n"
yield "\n"
return StreamingResponse(openai_streamer(), media_type="text/event-stream")
2. 环境配置
在Docker部署时,需要确保以下环境变量正确设置:
AZURE_API_KEY=your_azure_api_key
AZURE_API_BASE=http://localhost:8000/guards/my-guard/openai/v1
AZURE_REGION=eastus
AZURE_API_VERSION=2024-02-01
3. 客户端调用示例
使用Python客户端调用时,需要特别注意模型名称的格式:
from litellm import completion
import os
# 设置环境变量
os.environ["AZURE_API_KEY"] = "your_azure_api_key"
os.environ["AZURE_API_BASE"] = "http://localhost:8000/guards/my-guard/openai/v1"
os.environ["AZURE_REGION"] = "eastus"
os.environ["AZURE_API_VERSION"] = "2024-02-01"
# 调用Azure OpenAI
response = completion(
model = "azure/your-deployment-name",
messages = [{ "content": "你好,今天怎么样?","role": "user"}]
)
关键技术点解析
-
模型名称处理:Azure OpenAI要求模型名称以"azure/"前缀开头,需要在请求处理中自动添加这一前缀。
-
流式响应处理:对于流式响应,不能使用await表达式,直接迭代生成器对象即可。
-
路由路径差异:Azure OpenAI的API路径包含"/openai/deployments/{deployment_name}"段,需要特别处理。
-
认证集成:通过环境变量注入Azure认证信息,确保安全性和灵活性。
部署建议
- 使用Docker多阶段构建减少镜像体积
- 通过.env文件管理敏感信息,不要硬编码在代码中
- 为生产环境配置适当的资源限制和健康检查
- 实现日志收集和监控方案
总结
通过上述方案,开发者可以在Guardrails AI框架中无缝集成Azure OpenAI服务,同时保留Guardrails提供的所有验证和安全功能。这种集成方式既发挥了Azure云服务的优势,又确保了AI输出的安全性和可靠性,是企业级AI应用开发的理想选择。
未来,随着Guardrails项目的持续发展,预计官方将提供更完善的Azure OpenAI集成支持,进一步简化部署和配置流程。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492