JEPA项目视频识别准确率复现问题分析与解决方案
2025-06-27 10:24:09作者:郦嵘贵Just
问题背景
在复现JEPA项目的视频识别准确率时,研究人员发现模型预测结果与预期存在较大差异。具体表现为:使用预训练模型对Kinetics-400验证集视频进行测试时,预测标签与真实标签不符,甚至出现随机预测的情况。
关键发现
-
标签映射问题:最初发现预测结果与标准Kinetics-400标签定义不匹配。例如,"abseiling"动作的标准ID为0,但模型预测为198;"zumba"的标准ID为399,但模型预测为381。
-
模型加载问题:进一步分析发现,模型加载过程中可能存在权重未正确初始化的问题,导致预测结果随机。
-
代码版本问题:特定代码提交(787b04a)引入的线性层与原始训练配置不匹配,影响了预测效果。
解决方案
-
使用正确的标签映射:
- JEPA项目使用了自定义的Kinetics-400标签顺序,与标准定义不同
- 需要按照项目提供的400个类别模板进行标签映射
-
模型加载修正:
- 确保同时正确加载编码器(vith16.pth.tar)和分类器(vith16-k400-probe.pth.tar)
- 使用匹配的配置文件(vith16_k400_16x8x3)
-
代码版本回退:
- 回退到787b04a提交之前的版本
- 避免使用未在训练中使用的额外线性层
技术细节
-
模型架构:
- 基于Vision Transformer(ViT)的编码器
- 附加的线性分类头用于视频动作识别
-
数据处理:
- 输入视频需要预处理为16帧的片段
- 采用8x8x3的空间-时间采样策略
-
预测流程:
- 视频帧通过编码器提取特征
- 特征通过分类头得到预测分数
- 使用argmax获取最终预测类别
最佳实践建议
- 始终使用项目提供的标签定义文件
- 验证模型权重是否完整加载
- 检查代码版本与模型训练时的环境一致性
- 从小规模验证集开始测试,确认预测合理性
- 记录完整的复现环境配置(包括依赖库版本)
通过以上措施,研究人员可以成功复现JEPA项目中报告的视频识别准确率结果。这一过程强调了在复现深度学习研究时,细节配置和版本控制的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250