Arcus Cache Cloud:构建高效分布式缓存系统的利器
2024-09-24 08:48:45作者:卓炯娓
项目介绍
Arcus Cache Cloud 是由 NAVER Corp 开发的基于 memcached 的缓存云系统。Arcus 在 memcached 的基础上进行了大量的功能和性能优化,以满足 NAVER 服务的特殊需求。除了基本的键值数据模型外,Arcus 还支持集合数据结构(List、Set、Map、B+tree),使得用户可以以结构化的形式存储和检索多个值。
Arcus 通过 ZooKeeper 管理多个 memcached 节点集群。每个集群或云由其服务代码标识,用户可以动态添加或删除 memcached 节点或云。Arcus 能够自动检测并移除故障节点,确保系统的高可用性。
项目技术分析
Arcus 的核心技术架构如下:
- ZooKeeper:用于维护 memcached 节点的数据库,记录节点名称及其所属的服务代码。ZooKeeper 还负责维护每个云中的存活节点列表,并定期检查节点状态,更新缓存列表。
- Consistent Hashing:Arcus 客户端使用一致性哈希算法来确定每个键值操作的目标缓存节点,确保数据分布的均衡性和高效性。
- Hubble:用于收集和展示缓存云的统计信息,帮助用户监控系统性能。
项目及技术应用场景
Arcus 适用于以下场景:
- 高并发缓存系统:Arcus 通过分布式架构和一致性哈希算法,能够有效处理高并发的缓存请求,适用于需要快速响应的 Web 应用。
- 大数据存储与检索:Arcus 支持多种集合数据结构,适合存储和检索大规模的结构化数据,如社交网络中的用户关系数据。
- 动态扩展需求:Arcus 允许用户动态添加或删除缓存节点,适用于业务规模不断变化的场景。
项目特点
- 高性能:基于 memcached 的高效缓存机制,结合一致性哈希算法,确保数据访问的高效性。
- 高可用性:通过 ZooKeeper 管理节点状态,自动检测并移除故障节点,保证系统的高可用性。
- 灵活扩展:支持动态添加或删除缓存节点,满足业务扩展需求。
- 丰富的数据结构:除了基本的键值对,还支持 List、Set、Map、B+tree 等多种集合数据结构,提供更灵活的数据存储和检索方式。
快速开始
Arcus 的安装和配置通常包括以下三个步骤:
- 准备工作:克隆并构建 Arcus 代码,部署 Arcus 代码/二进制包。
- ZooKeeper 设置:初始化 ZooKeeper 集群,启动 ZooKeeper 进程。
- Memcached 设置:将缓存云信息注册到 ZooKeeper,启动缓存节点。
在本地机器上快速设置和测试 Arcus 云,可以运行以下命令:
# 安装依赖
sudo yum install gcc gcc-c++ autoconf automake libtool pkgconfig cppunit-devel python-setuptools python-devel python-pip nc (CentOS)
sudo apt-get install build-essential autoconf automake libtool libcppunit-dev python-setuptools python-dev python-pip netcat (Ubuntu)
# 克隆并构建
git clone https://github.com/naver/arcus.git
cd arcus/scripts
./build.sh
# 设置本地缓存云
./arcus.sh quicksetup conf/local.sample.json
# 测试
echo "stats" | nc localhost 11211 | grep version
STAT version 1.7.0
echo "stats" | nc localhost 11212 | grep version
STAT version 1.7.0
文档与资源
通过 Arcus,您可以轻松构建高效、高可用的分布式缓存系统,满足各种复杂业务需求。立即尝试 Arcus,体验其强大的功能和卓越的性能!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
340
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
266
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
668
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
45
32