Python-Levenshtein 使用教程
2026-01-19 10:54:35作者:幸俭卉
项目介绍
python-Levenshtein 是一个用于计算字符串之间 Levenshtein 距离的 Python 扩展模块。Levenshtein 距离,也称为编辑距离,是指两个字符串之间由一个转换成另一个所需的最少单字符编辑操作次数。这些操作包括插入、删除和替换。该库提供了快速计算这些距离的功能,适用于文本处理、数据清洗、搜索引擎优化等领域。
项目快速启动
安装
首先,你需要安装 python-Levenshtein 库。你可以使用 pip 进行安装:
pip install python-Levenshtein
基本使用
以下是一个简单的示例,展示如何计算两个字符串之间的 Levenshtein 距离:
from Levenshtein import distance
str1 = "kitten"
str2 = "sitting"
# 计算 Levenshtein 距离
lev_distance = distance(str1, str2)
print(f"The Levenshtein distance between '{str1}' and '{str2}' is {lev_distance}")
应用案例和最佳实践
文本相似度计算
在自然语言处理中,计算文本相似度是一个常见的需求。python-Levenshtein 可以用于比较两个文本的相似度:
from Levenshtein import ratio
text1 = "Python is a great programming language"
text2 = "Python is an awesome coding language"
# 计算相似度比率
similarity_ratio = ratio(text1, text2)
print(f"The similarity ratio between the two texts is {similarity_ratio}")
数据清洗
在数据清洗过程中,可以使用 python-Levenshtein 来识别和处理相似但不完全相同的字符串:
from Levenshtein import distance
data = ["apple", "aple", "appel", "appl"]
# 找出与 "apple" 最相似的字符串
target = "apple"
min_distance = float('inf')
closest_word = ""
for word in data:
d = distance(target, word)
if d < min_distance:
min_distance = d
closest_word = word
print(f"The closest word to '{target}' is '{closest_word}' with a distance of {min_distance}")
典型生态项目
RapidFuzz
RapidFuzz 是一个基于 python-Levenshtein 的快速模糊字符串匹配库。它提供了更快的字符串相似度计算,并且使用 MIT 许可,比 FuzzyWuzzy 更加灵活。
pip install rapidfuzz
示例代码:
from rapidfuzz import fuzz
str1 = "hello world"
str2 = "hallo world"
# 计算相似度
similarity = fuzz.ratio(str1, str2)
print(f"The similarity between '{str1}' and '{str2}' is {similarity}")
通过以上教程,你可以快速上手并应用 python-Levenshtein 库进行字符串相似度计算和数据清洗等任务。希望这些内容对你有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.61 K
Ascend Extension for PyTorch
Python
298
332
暂无简介
Dart
738
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
270
113
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
467
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
296
343
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20