pytest中会话级别fixture的正确使用方式
在pytest测试框架中,fixture是一个强大的功能,它允许开发者设置测试环境并在测试之间共享资源。然而,在使用会话级别(scope="session")的fixture时,开发者可能会遇到一些意料之外的行为,特别是当尝试通过显式导入而非使用conftest.py文件时。
会话级别fixture的基本概念
会话级别fixture是指在pytest整个测试会话期间只执行一次的fixture。这意味着无论有多少个测试模块或测试函数使用了这个fixture,它都只会被初始化一次,并在所有测试完成后才进行清理工作。这种特性非常适合用于那些创建成本高或需要全局共享的资源,如数据库连接、临时文件目录等。
问题现象
当开发者尝试将会话级别fixture定义在普通Python模块中,并通过显式导入的方式在多个测试模块中使用时,会发现这个fixture实际上会在每个导入它的模块中都被执行一次,而不是预期的整个会话只执行一次。这与将fixture定义在conftest.py文件中的行为形成了鲜明对比。
原因分析
pytest框架内部将每个导入fixture的模块视为该fixture的一个新定义点。这意味着:
- 即使fixture被标记为会话级别,pytest也会为每个导入它的模块创建一个独立的实例
- 这种行为导致fixture的初始化和清理会在每个导入它的模块中重复执行
- 这与开发者对会话级别fixture的预期行为不符
官方推荐做法
pytest官方文档明确指出,不建议通过导入的方式使用fixture,特别是从其他项目中导入fixture。这种做法可能会导致:
- 同一个fixture在pytest帮助信息(--help)中多次出现
- 未来版本中可能会改变或停止支持这种行为
- 最严重的是,会话级别fixture无法按预期工作
最佳实践
为了确保会话级别fixture正常工作,开发者应当:
- 将需要跨模块共享的fixture定义在conftest.py文件中
- 避免通过显式导入的方式使用fixture
- 对于项目内部的fixture共享,优先考虑使用conftest.py文件的层级结构
conftest.py文件是pytest专门为fixture共享设计的机制,它能够确保:
- 会话级别fixture真正只执行一次
- fixture可以按照预期的作用域(函数、类、模块或会话)工作
- 测试代码更加整洁,不需要显式导入fixture
替代方案思考
虽然conftest.py是官方推荐的方式,但确实存在一些开发者更倾向于显式导入的模式,因为:
- 显式导入使得依赖关系更加清晰可见
- 可以明确知道fixture的来源和定义位置
- 代码组织结构可能更加直观
然而,考虑到pytest的设计哲学和fixture的工作机制,目前conftest.py仍然是管理共享fixture的最佳选择。开发者可以通过良好的命名规范和项目结构来弥补conftest.py在显式性方面的不足。
总结
理解pytest中fixture的工作机制对于编写高效、可靠的测试代码至关重要。对于会话级别fixture,开发者应当遵循官方推荐的做法,将其定义在conftest.py文件中,而不是尝试通过模块导入的方式共享。这种做法不仅能够确保fixture按预期工作,还能保持测试代码的一致性和可维护性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00