Seurat项目中CLR标准化ADT数据的差异表达分析策略
2025-07-01 12:14:19作者:戚魁泉Nursing
概述
在单细胞多组学分析中,表面蛋白(ADT)数据经过中心对数比(CLR)标准化后,如何进行有效的差异表达分析是一个常见的技术挑战。本文将详细介绍在Seurat项目中处理CLR标准化ADT数据的两种主要方法:FindMarkers函数和伪批量(pseudobulk)分析。
CLR标准化ADT数据特点
CLR(中心对数比)标准化是一种常用于成分数据的转换方法,特别适合处理ADT数据。当对ADT数据进行CLR标准化时(marg=2),实际上是对每个细胞的蛋白表达量进行了行方向的标准化处理。这种处理方式能够有效消除技术变异,保留生物差异信号。
差异表达分析方法比较
1. FindMarkers方法
FindMarkers是Seurat包中内置的差异表达分析函数,适用于细胞水平的比较:
- 优点:提供精细的细胞水平差异分析,适合样本量较小的情况
- 适用场景:当样本量有限或需要探索细胞亚群间的细微差异时
- 注意事项:结果可能包含较多技术噪音,需要更严格的统计显著性阈值
2. 伪批量分析方法
伪批量分析通过将样本内相似细胞的表达量进行聚合,模拟传统批量RNA-seq分析:
- 优点:减少技术噪音,提高统计功效,特别适合有生物重复的实验设计
- 适用场景:当有多个生物重复样本时,能够更好地捕捉条件间的真实差异
- 实施步骤:
- 按样本和条件分组细胞
- 计算每组的平均或总和表达量
- 使用传统的差异表达分析方法(如DESeq2、edgeR等)进行比较
方法选择建议
对于匹配样本的条件比较实验,特别是当ADT数据已经过CLR标准化并与RNA数据整合后,推荐以下策略:
- 样本量考量:样本量较少(如n<5)时优先考虑FindMarkers;样本量充足时推荐伪批量分析
- 数据整合影响:由于数据已基于RNA进行整合,建议在差异分析时考虑批次效应
- 多重检验校正:无论采用哪种方法,都应进行严格的多重检验校正(FDR控制)
实施建议
对于大多数实验设计,特别是那些有生物重复的研究,伪批量分析通常能提供更稳健的结果。实施时可考虑以下步骤:
- 按样本和实验条件创建伪批量表达矩阵
- 对CLR标准化后的ADT数据进行聚合(均值或中位数)
- 使用线性模型考虑潜在的混杂因素
- 结合可视化方法(如火山图、热图)验证结果
通过合理选择和应用这些方法,研究人员可以有效地从CLR标准化的ADT数据中挖掘有生物学意义的差异表达信号。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217