BEVFusion 开源项目使用指南
2026-01-16 10:38:27作者:宣海椒Queenly
1. 项目目录结构及介绍
BEVFusion 是一个专为自动驾驶设计的多传感器融合项目,以实现高效的3D对象检测与分割。以下是其核心目录结构及简要说明:
.
├── assets # 静态资源文件夹
├── configs # 配置文件夹,包含模型训练和测试的配置
│ ├── nuscenes # NuScenes数据集特定配置
│ └── ...
├── docker # Docker相关文件,用于环境标准化
├── mmdet3d # 基于mmdetection3d的定制或扩展代码
├── tools # 工具脚本,包括训练、测试、评估等操作
│ ├── train.py # 训练脚本
│ ├── test.py # 测试脚本
│ └── ...
├── .gitignore # Git忽略文件列表
├── LICENSE # 开源许可证文件
├── README.md # 项目主要说明文档
├── setup.cfg # 设定项目配置
└── setup.py # Python包的安装脚本
关键目录说明:
configs: 包含所有模型训练和实验设置的YAML配置文件。tools: 提供了主要的操作工具如训练 (train.py) 和测试 (test.py) 脚本。mmdet3d: 修改或基于mmdetection3d的实现,进行了多传感器融合相关的定制开发。
2. 项目的启动文件介绍
主要启动文件
-
train.py: 用于启动模型训练的主要脚本。通过指定配置文件路径和可能的命令行参数,此脚本执行从数据加载到模型训练的整个过程。
示例命令:运行LiDAR-only BEV分割模型
torchpack dist-run -np 8 python tools/train.py configs/nuscenes/seg/lidar-centerpoint-bev128.yaml -
test.py: 用于模型测试的脚本,可以用来验证训练后的模型性能。
使用示例(需先单独运行训练):
tools/test.py 配置文件路径 模型权重路径
这些脚本支持分布式训练,并且允许通过命令行参数进行多种自定义配置。
3. 项目的配置文件介绍
配置文件(.yaml)位于configs目录下,是控制训练、测试及模型架构的关键。文件通常包含以下几个部分:
- 基础模型设定: 包括网络结构、损失函数、优化器设置等。
- 数据集参数: 数据集路径、预处理方式、批次大小等。
- 训练设置: 如迭代次数、学习率调度等。
- 测试选项: 包含评估指标、输出结果的保存位置等。
例如,在进行BEVFusion检测模型训练时,配置文件将详细指定两阶段模型的每一层细节,以及如何结合来自激光雷达和相机的数据。修改这些配置文件可以让用户根据自己的需求调整模型行为和实验条件。
在实际应用中,开发者应当深入阅读具体配置文件及注释,理解每个参数的意义,以便进行有效定制。
以上即为BEVFusion项目的简单介绍,包括其目录结构、启动文件与配置文件的概览。为了深入理解和高效使用该项目,建议进一步查阅项目文档和GitHub页面上的详细说明。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
289
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870