DataFusion 内存表排序查询的并行优化问题解析
2025-05-31 13:44:02作者:温艾琴Wonderful
在 Apache DataFusion 项目中,我们发现了一个关于内存表(MemTable)排序查询并行执行的有趣现象。本文将深入分析这个问题,探讨其技术背景,并解释相关的优化思路。
问题背景
DataFusion 是一个高性能的查询执行引擎,支持多种查询操作的并行执行。其中,排序(Sort)和聚合(Aggregate)是两种常见的操作,它们都可以通过配置参数datafusion.execution.target_partitions来指定并行度。
当输入数据的分区数少于目标分区数时,系统会自动插入一个轮询(round-robin)重新分区操作,以提高并行处理能力。这在聚合查询中表现正常,但在排序查询中却出现了不一致的行为。
现象观察
通过测试用例可以观察到以下现象:
- 对于聚合查询,当内存表只有一个输出分区时,系统会自动插入
RepartitionExec进行轮询重新分区 - 对于排序查询,同样的条件下却不会进行自动重新分区
这种差异会导致排序查询无法充分利用并行计算资源,特别是在处理大量数据时可能影响性能。
技术分析
经过深入分析,我们发现问题的根源在于SortExec执行器的两个关键方法:
benefits_from_input_partitioning方法返回vec![false],导致系统认为排序操作不会从输入分区中受益required_input_distribution方法在没有设置preserve_partitioning时返回vec![Distribution::SinglePartition],使得ensure_distribution也不会尝试添加轮询重新分区
解决方案探讨
针对这个问题,我们考虑了两种可能的修改方案:
- 简单方案:将
required_input_distribution改为返回Distribution::UnspecifiedDistribution,并将benefits_from_input_partitioning改为返回true - 更完善的方案:根据
preserve_partitioning标志动态调整返回的分布类型,支持哈希分区和有序分布
然而,初步测试发现这些修改可能会导致结果顺序异常,这表明需要更深入的调整。
更深层次的解决方案
进一步研究发现,更根本的解决方案可能是实现MemorySourceConfig的repartitioned方法。目前这个方法尚未实现,导致内存表无法主动进行重新分区。
总结与展望
DataFusion 在处理内存表排序查询时的并行优化存在改进空间。通过正确实现相关执行器的分区受益判断和输入分布要求,以及完善内存表自身的重新分区能力,可以显著提升排序查询的并行执行效率。
这个问题也提醒我们,在构建高性能查询引擎时,需要全面考虑各种数据源和执行操作的特性,确保并行优化能够一致地应用于所有场景。未来,DataFusion 可能会进一步完善这方面的实现,提供更高效的排序查询执行能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137