DataFusion 内存表排序查询的并行优化问题解析
2025-05-31 21:51:32作者:温艾琴Wonderful
在 Apache DataFusion 项目中,我们发现了一个关于内存表(MemTable)排序查询并行执行的有趣现象。本文将深入分析这个问题,探讨其技术背景,并解释相关的优化思路。
问题背景
DataFusion 是一个高性能的查询执行引擎,支持多种查询操作的并行执行。其中,排序(Sort)和聚合(Aggregate)是两种常见的操作,它们都可以通过配置参数datafusion.execution.target_partitions
来指定并行度。
当输入数据的分区数少于目标分区数时,系统会自动插入一个轮询(round-robin)重新分区操作,以提高并行处理能力。这在聚合查询中表现正常,但在排序查询中却出现了不一致的行为。
现象观察
通过测试用例可以观察到以下现象:
- 对于聚合查询,当内存表只有一个输出分区时,系统会自动插入
RepartitionExec
进行轮询重新分区 - 对于排序查询,同样的条件下却不会进行自动重新分区
这种差异会导致排序查询无法充分利用并行计算资源,特别是在处理大量数据时可能影响性能。
技术分析
经过深入分析,我们发现问题的根源在于SortExec
执行器的两个关键方法:
benefits_from_input_partitioning
方法返回vec![false]
,导致系统认为排序操作不会从输入分区中受益required_input_distribution
方法在没有设置preserve_partitioning
时返回vec![Distribution::SinglePartition]
,使得ensure_distribution
也不会尝试添加轮询重新分区
解决方案探讨
针对这个问题,我们考虑了两种可能的修改方案:
- 简单方案:将
required_input_distribution
改为返回Distribution::UnspecifiedDistribution
,并将benefits_from_input_partitioning
改为返回true
- 更完善的方案:根据
preserve_partitioning
标志动态调整返回的分布类型,支持哈希分区和有序分布
然而,初步测试发现这些修改可能会导致结果顺序异常,这表明需要更深入的调整。
更深层次的解决方案
进一步研究发现,更根本的解决方案可能是实现MemorySourceConfig
的repartitioned
方法。目前这个方法尚未实现,导致内存表无法主动进行重新分区。
总结与展望
DataFusion 在处理内存表排序查询时的并行优化存在改进空间。通过正确实现相关执行器的分区受益判断和输入分布要求,以及完善内存表自身的重新分区能力,可以显著提升排序查询的并行执行效率。
这个问题也提醒我们,在构建高性能查询引擎时,需要全面考虑各种数据源和执行操作的特性,确保并行优化能够一致地应用于所有场景。未来,DataFusion 可能会进一步完善这方面的实现,提供更高效的排序查询执行能力。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
461

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.09 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
607
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4